Untitled
unknown
matlab
2 years ago
2.5 kB
26
Indexable
%% comp3 2.2 Kalman filtering of time series addpath '/Users/noahakesson/MATLAB-Drive/Comp2/Tidserie/functions' addpath '/Users/noahakesson/MATLAB-Drive/Comp2/Tidserie/data' close all clear all %% % Simulate an AR(2) process. rng(0) % Set the seed (just done for the lecture!) N = 500; A0_start = -0.95; A0_stop = -0.45; A1 = linspace( A0_start,A0_start, N); A2 = linspace( A0_start,A0_start, N) %A1(N/2:end) = A0_stop; % Abruptly change a_1. y = zeros(N,1); e = randn( N, 1 ); for k=3:N % Implement filter by hand to allow a1 to change. y(k) = e(k) - A1(k)*y(k-1) - A2(k)*y(k-2); end % Define the state space equations . A = [ 1 0 ; 0 1 ] ; Re = [ 0.004 0 ; 0 0 ] ; % State covariance matrix Rw = 1.25; % Observation variance % Set some initialvalues Rxx_1 = 10*eye ( 2 ) ; % Initialstate variance xtt_1 = [ 0 0 ]'; % Initialstatevalues %xtt_1 --> x_{t|t-1} %xt = zeros(2,N); % x_{t|t} initial state % Vectors to store values in Xsave = zeros( 2 ,N) ; % Stored states ehat = zeros( 1 ,N) ; % Pr e d i c t i on r e s i d u a l yt1 = zeros( 1 ,N) ; % One s t e p p r e d i c t i o n yt2 = zeros( 1 ,N) ; % Two s t e p p r e d i c t i o n % The f i l t e r use data up to t ime t-1 to predictvalue at t, % then update using the prediction error. Why do we start % from t=3? Why stop at N-2? for t=3:N-2 Ct = [ -y(t-1) -y(t-2) ] ; %C_{t|t-1} yhat ( t ) = Ct*xtt_1; %y_{t|t-1} = Ct*x_{t|t-1} ehat ( t ) = y(t)-yhat(t); % e_t = y_t - y_{t|t-1} % Update Ryy = Ct*Rxx_1*Ct' + Rw; % R^{yy}_{t|t-1} = Ct*R_{t|t-1}^{x,x} + Rw Kt = Rxx_1*Ct'/Ryy; % K_t = R^{x,x}_{t|t-1} C^T inv( R_{t|t-1}^{y,y} ) xt_t = xtt_1 + Kt*( ehat(t) ); % x_{t|t} = x_{t|t-1} + K_t ( y_t - Cx_{t|t-1} ) Rxx = Rxx_1 - Kt*Ryy*Kt'; % R{xx}_{t|t} = R^{x,x}_{t|t-1} - K_t R_{t|t-1}^{y,y} K_t^T % Predict the nextstate xt_t1 = A*xt_t; % x_{t+1|t} HÄR KAN VARA EN B*U_t term om man har input??? Rxx_1 = A*Rxx*A' + Re; % R^{x,x}_{t+1|t} = A R^{x,x}_{t|t} A^T + Re % Form 2 stepprediction . Ignore this part at first . % Ct1 = [ ? ? ] ; % yt1 ( t+1) = ? % Ct2 = [ ? ? ] ; % yt2 ( t+2) = ? % % Store the statevector Xsave(:, t) = xt_t; end figure plot(Xsave(1,:)) hold on plot(Xsave(2,:))
Editor is loading...