Untitled
unknown
plain_text
2 years ago
1.3 kB
7
Indexable
# ...
for _, row in filtered_df.iterrows():
eprm_table_name = row['eprm_table_name']
eprm_join_cols_entity = row['eprm_join_cols_entity']
eprm_join_cols_reim = row['eprm_join_cols_reim']
eprm_table_alias = row['eprm_table_alias']
# Split the strings by ',' to get individual column assignments
columns_entity = eprm_join_cols_entity.split(',')
columns_reim = eprm_join_cols_reim.split(',')
# Compare the lengths of the column assignments
if len(columns_entity) != len(columns_reim):
# Concatenate missing fields from entity to the end of the columns_reim list
columns_reim += [column.strip() for column in columns_entity[len(columns_reim):]]
# Construct the modified assignment string
assignment_string = ''
for col_reim in columns_reim:
# Extract the column name after '='
col_name = col_reim.split('=')[0].strip()
# Append the modified assignment to the string
assignment_string += f"{col_reim.replace(col_name, eprm_table_alias + '.' + col_name)}, "
# Remove the trailing comma and whitespace
assignment_string = assignment_string.rstrip(', ')
assignment_string = assignment_string.replace("AND", ",")
eprm_join_reim = assignment_string
# ...
Editor is loading...