Untitled
unknown
plain_text
2 years ago
1.3 kB
5
Indexable
# ... for _, row in filtered_df.iterrows(): eprm_table_name = row['eprm_table_name'] eprm_join_cols_entity = row['eprm_join_cols_entity'] eprm_join_cols_reim = row['eprm_join_cols_reim'] eprm_table_alias = row['eprm_table_alias'] # Split the strings by ',' to get individual column assignments columns_entity = eprm_join_cols_entity.split(',') columns_reim = eprm_join_cols_reim.split(',') # Compare the lengths of the column assignments if len(columns_entity) != len(columns_reim): # Concatenate missing fields from entity to the end of the columns_reim list columns_reim += [column.strip() for column in columns_entity[len(columns_reim):]] # Construct the modified assignment string assignment_string = '' for col_reim in columns_reim: # Extract the column name after '=' col_name = col_reim.split('=')[0].strip() # Append the modified assignment to the string assignment_string += f"{col_reim.replace(col_name, eprm_table_alias + '.' + col_name)}, " # Remove the trailing comma and whitespace assignment_string = assignment_string.rstrip(', ') assignment_string = assignment_string.replace("AND", ",") eprm_join_reim = assignment_string # ...
Editor is loading...