Untitled
unknown
julia
a year ago
2.9 kB
3
Indexable
Never
module fDNLS_Direct using DifferentialEquations, GLMakie, LinearAlgebra, OffsetArrays using SpecialFunctions: zeta GLMakie.activate!() #= DifferentialEquations - Used for the ODE Solver GLMakie - 2D/3D plotting backend, LinearAlgebra, SpecialFunctions - Used for importing the Riemann zeta function =# function main(N, end_time) #= Per the boundary conditions, solve for u = (u_{-N+1}, ..., u_{N-1}) =# h = 1 α = 0.2 tspan = (0.0,25.0) x = -N+1:N-1 # Per u_(-N) = 0 and u_(N) = 0, then we solve the (2N+1) - 2 = 2N-1 total equations RHS(u,p,t) = im*(h*coefficientMatrix(α,x)*u - abs2.(u).*u) # initial_values = 0.9*Complex.(sech.(x)).* exp.(im*x) initial_values = onSite(30,α,x)# .* exp.(im*x) # onSite(ω, α) # Equivalent to Ode45 from Matlab prob = ODEProblem(RHS, initial_values, tspan) sol = solve(prob, Tsit5(), reltol=1e-8, abstol=1e-8) plot_main(sol, x) # Surface and contour plot of |u|² return sol end function coefficientMatrix(α,x) M = OffsetArray(zeros(length(x), length(x)), x,x) # Offset indices for M[i,j]. For example, M[-N+1, -N+1] corresponds to M[1,1]. for i in firstindex(M,1) : lastindex(M,1) for j in axes(M,2) i == j ? M[i,i] = 1/abs(i - (-N))^(1+α) + sum(1/abs(i - m)^(1+α) for m in x if m!=i) + 1/abs(i - N)^(1+α) : M[i,j] = -1/abs(i - j) end end return M.parent end function onSite(ω,α,x) # Assumption: qₙ = q₋ₙ, q₀ >> 1 >> q₁ >> ... Q = OffsetVector(zeros(Complex{Float64},length(x)),x) Q[0] = sqrt(ω + 2*zeta(1+α)) # Obtain q₂, q₃, ... via equation (3.1) for n in 1:maximum(x) #drop first 1 since already initialized asymptotic_onsite = sum(Q[j]/(n+j)^(1+α) for j in 1-n:n-1)/(2*zeta(1+α) - 1/(2n)^(1+α) + ω) Q[-n] = asymptotic_onsite Q[n] = asymptotic_onsite end return Q.parent # typeof(Q) = OffsetVector, typeof(Q.parent) = Vector end function plot_main(sol,x) fig = Figure(backgroundcolor=:snow2) y = sol.t z= [abs(sol[i,j])^2 for i in axes(sol,1), j in axes(sol,2)] # sol[i,j] is the ith component at timestep j. p1 = surface(fig[1,1], x, y, z, axis=(type=Axis3, xlabel="Space", ylabel="Time", zlabel="|u|²", title=L"\text{Intensity plot with } u(x,0) = \text{ asymptotic onsite sequence}")) #p2 = contourf(fig[1,2], x, y, z, axis=(xlabel="Space", ylabel="Time")) #p2 = scatter(fig[1,2], x, onSite(30,0.2,x), xlabel="Space", ylabel="qₙ", title="Asymptotic onsite sequence") normSol_inf = [norm(sol[i], Inf) for i in 1:length(sol.t)] p3 = lines(fig[2,:], y, normSol_inf, label=L"k=1", axis=(xlabel="Time", ylabel=L"L^{\infty}", xticks=0:0.5:25)) axislegend() display(fig) end const N=18 const end_time=20 main(N, end_time) end