Untitled
unknown
plain_text
23 days ago
1.5 kB
3
Indexable
Never
# Create a directed graph for Monica's Sailboat Company decision problem G2 = nx.DiGraph() # Adding nodes for Monica's Decision G2.add_node("Start", label="Start Decision", pos=(0, 0)) # Options for Monica's Decision G2.add_node("Large Facility", label="Large Facility", pos=(1, 1)) G2.add_node("Small Facility", label="Small Facility", pos=(1, -1)) G2.add_node("No Business", label="No Business", pos=(1, -2)) # Outcomes for Large Facility G2.add_node("LF_Fav", label="Favorable Market (Large)", pos=(2, 1.5)) G2.add_node("LF_Unfav", label="Unfavorable Market (Large)", pos=(2, 0.5)) # Outcomes for Small Facility G2.add_node("SF_Fav", label="Favorable Market (Small)", pos=(2, -0.5)) G2.add_node("SF_Unfav", label="Unfavorable Market (Small)", pos=(2, -1.5)) # Edges representing decision paths for Monica's problem G2.add_edges_from([ ("Start", "Large Facility"), ("Start", "Small Facility"), ("Start", "No Business"), ("Large Facility", "LF_Fav"), ("Large Facility", "LF_Unfav"), ("Small Facility", "SF_Fav"), ("Small Facility", "SF_Unfav") ]) # Labels for each node labels2 = nx.get_node_attributes(G2, 'label') positions2 = nx.get_node_attributes(G2, 'pos') # Draw the graph for Monica's decision tree plt.figure(figsize=(8, 6)) nx.draw(G2, positions2, labels=labels2, with_labels=True, node_size=2000, node_color='lightgreen', font_size=8, font_color='black', font_weight='bold', edge_color='gray') plt.title("Decision Tree for Monica's Sailboat Company") plt.show()
Leave a Comment