Untitled
unknown
plain_text
a month ago
2.5 kB
3
Indexable
Never
import torch import torch.nn as nn import torchvision.transforms as transforms from torchvision import models from PIL import Image import cv2 from tqdm import tqdm def create_emotion_model(num_ftrs, num_emotions): return nn.Sequential( nn.Linear(num_ftrs + num_emotions, 128), nn.ReLU(), nn.Linear(128, 64), nn.ReLU(), nn.Linear(64, 2), ) def load_model(model_path, device): model = models.resnet18(pretrained=False) num_ftrs = model.fc.in_features model.fc = nn.Identity() model.load_state_dict(torch.load(model_path, map_location=device)) model.to(device).eval() return model, num_ftrs def load_emotion_model(num_ftrs, num_emotions, model_path, device): emotion_model = create_emotion_model(num_ftrs, num_emotions).to(device) emotion_model.load_state_dict(torch.load(model_path, map_location=device)) emotion_model.eval() return emotion_model def va_predict(val_model_path, val_featmodel_path, faces, emotions): device = "cuda" if torch.cuda.is_available() else "cpu" # Load the models resnet, num_ftrs = load_model(val_featmodel_path, device) num_emotions = 1 # Assuming single emotion feature emotion_model = load_emotion_model(num_ftrs, num_emotions, val_model_path, device) # Define image transformation transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) def model_forward(images, emotions): resnet_features = resnet(images) batch_size = resnet_features.size(0) emotions = emotions.view(batch_size, -1) x = torch.cat((resnet_features, emotions), dim=1) return emotion_model(x) arousal_list, valence_list, stress_list = [], [], [] for face, emotion in tqdm(zip(faces, emotions), total=len(faces)): face_pil = Image.fromarray(cv2.cvtColor(face, cv2.COLOR_BGR2RGB)) face_tensor = transform(face_pil).unsqueeze(0).to(device) emotion = emotion.to(device) with torch.no_grad(): output_va = model_forward(face_tensor, emotion) arousal = float(output_va[0][0].item()) / 2 + 0.5 valence = float(output_va[0][1].item()) / 2 + 0.5 stress = (1 - valence) * arousal arousal_list.append(arousal) valence_list.append(valence) stress_list.append(stress) return valence_list, arousal_list, stress_list
Leave a Comment