Research
unknown
plain_text
5 days ago
756 B
3
Indexable
# Reshaping the dataset for better readability df_melted = df.melt(id_vars=['Day'], var_name='Measurement', value_name='Value') # Splitting 'Measurement' into Treatment, Duck Number, and Type (Weight, Height, Feather Health) df_melted[['Treatment', 'Duck Number', 'Type']] = df_melted['Measurement'].str.extract(r'Treatment (\w) - Duck (\d) (.+)') # Pivot the data to show all types in separate columns for each day and duck df_final = df_melted.pivot_table(index=['Day', 'Treatment', 'Duck Number'], columns='Type', values='Value').reset_index() # Renaming columns for clarity df_final.columns = ['Day', 'Treatment', 'Duck Number', 'Feather Health (1-5)', 'Height (cm)', 'Weight (g)'] # Display the first few rows to check the format df_final.head(10)
Editor is loading...
Leave a Comment