Untitled
unknown
plain_text
a year ago
2.5 kB
2
Indexable
Never
import pandas as pd import mysql.connector releaseId='1.0' releaseType='TESTING' replicationTarget='' catalogId='' opId='HOB' buId='DEFAULT' replicationJobId='' cnx = mysql.connector.connect(user='tibtcare_ppm_st2', password='tibtcare_ppm_st2', host='10.16.16.128', port='3308') cursor = cnx.cursor() primary_query = "SELECT * FROM tibtcare_ppm_st2.etl_ppm_replication_master" cursor.execute(primary_query) rows = cursor.fetchall() columns = [desc[0] for desc in cursor.description] df = pd.DataFrame(rows, columns=columns) filtered_df = df[df['eprm_catalog'].isin(['PC']) & (df['eprm_enabled_flg'] == 'Y')] for _, row in filtered_df.iterrows(): eprm_table_name = row['eprm_table_name'] eprm_join_cols_entity = row['eprm_join_cols_entity'] eprm_join_cols_reim = row['eprm_join_cols_reim'] eprm_table_alias = row['eprm_table_alias'] # Replace 'AND' with ',' in eprm_join_cols_reim eprm_join_cols_reim = eprm_join_cols_reim.replace('AND', ',') # Split the string by ',' to get individual column assignments columns_reim = eprm_join_cols_reim.split(',') # Construct the modified assignment string assignment_string = '' for col_reim in columns_reim: # Extract the column name after '=' col_name = col_reim.split('=')[0].strip() # Append the modified assignment to the string assignment_string += f"{col_reim.replace(col_name, eprm_table_alias + '.' + col_name)}, " # remove the trailing comma and whitespace assignment_string = assignment_string.rstrip(', ') assignment_string = assignment_string.replace("AND", ",") secondary_query = f"SELECT COUNT(*) FROM tibtcare_ppm_st2.{eprm_table_name} WHERE ({eprm_join_cols_entity}) IN (SELECT {eprm_join_cols_entity} FROM tibtcare_ppm_st2.release_entity_inst_map)" # extract only the column names after "=" and "." column_names = [col.split('=')[1].split('.')[-1].strip() for col in columns_reim] # Create a string of the extracted column names separated by commas column_names_string = ', '.join(column_names) # replace the column fields in the secondary query with the extracted column names secondary_query = secondary_query.replace(assignment_string, column_names_string) cursor.execute(secondary_query) result = cursor.fetchone() print(secondary_query) print(f"Count for {eprm_table_name}: {result[0]}") cursor.close() cnx.close()