Untitled
unknown
plain_text
a year ago
1.4 kB
1
Indexable
Never
import numpy as np # Define your criteria and alternatives criteria = ["Criterion 1", "Criterion 2", "Criterion 3", ...] alternatives = ["Alternative 1", "Alternative 2", "Alternative 3", ...] # Create a matrix to input pairwise comparison values (criteria x criteria) pairwise_matrix = np.zeros((len(criteria), len(criteria))) # Input your pairwise comparison values (on a scale from 1 to 9, where 1 means equal importance and 9 means extreme importance) pairwise_matrix[0][1] = 3 # Example: Criterion 1 is moderately more important than Criterion 2 pairwise_matrix[1][0] = 1/3 # Reverse of the above comparison # Repeat the above process for all pairwise comparisons # Calculate the criteria weights criteria_weights = np.mean(pairwise_matrix, axis=1) / np.sum(np.mean(pairwise_matrix, axis=1)) # Create a matrix to input pairwise comparison values (alternatives x alternatives) pairwise_matrix_alternatives = np.zeros((len(alternatives), len(alternatives))) # Input your pairwise comparison values for alternatives # Repeat the above process for all pairwise comparisons among alternatives # Calculate the alternative weights alternative_weights = np.mean(pairwise_matrix_alternatives, axis=1) / np.sum(np.mean(pairwise_matrix_alternatives, axis=1)) # Print criteria and alternative weights print("Criteria Weights:", criteria_weights) print("Alternative Weights:", alternative_weights)