Untitled
unknown
python
5 months ago
708 B
17
Indexable
def gradient_descent(X, y, learning_rate=0.01, iterations=1000): num_samples, num_features = X.shape theta = np.zeros((num_features, 1)) # Initialize theta to zeros cost_history = [] for i in range(iterations): # Compute predictions predictions = X.dot(theta) # Compute the error error = predictions - y # Compute the gradient gradients = (1 / num_samples) * X.T.dot(error) # Update the parameters theta -= learning_rate * gradients # Optionally, compute the cost for monitoring progress cost = (1 / (2 * num_samples)) * np.sum(error ** 2) cost_history.append(cost) return theta, cost_history
Editor is loading...
Leave a Comment