Untitled
unknown
plain_text
a year ago
1.3 kB
10
Indexable
using Microsoft.ML; using Microsoft.ML.Data; using Zadaca4Clustering; using Zadaca4Clustering.Classes; string _dataPath = Path.Combine(Environment.CurrentDirectory, "Data", "StudentDatasetBerun.csv"); string _modelPath = Path.Combine(Environment.CurrentDirectory, "Data", "StudentClusteringModel.zip"); var mlContext = new MLContext(seed: 0); IDataView dataView = mlContext.Data.LoadFromTextFile<StudentData>(_dataPath, hasHeader: false, separatorChar: ','); string featuresColumnName = "Features"; var pipeline = mlContext.Transforms .Concatenate(featuresColumnName, "P104", "P12", "P140", "P141", "P142", "P143") .Append(mlContext.Clustering.Trainers.KMeans(featuresColumnName, numberOfClusters: 3)); var model = pipeline.Fit(dataView); using (var fileStream = new FileStream(_modelPath, FileMode.Create, FileAccess.Write, FileShare.Write)) { mlContext.Model.Save(model, dataView.Schema, fileStream); } var predictor = mlContext.Model.CreatePredictionEngine<StudentData, ClusterPrediciton>(model); var prediction = predictor.Predict(TestStudentData.studentData); Console.WriteLine($"Cluster: {prediction.ClusterID}"); Console.WriteLine($"Distances: {string.Join(" ", prediction.Distances ?? Array.Empty<float>())}");
Editor is loading...
Leave a Comment