Untitled
import numpy as np # Sigmoid activation function and its derivative def sigmoid(x): return 1 / (1 + np.exp(-x)) def sigmoid_derivative(x): return x * (1 - x) # Neural Network class class NeuralNetwork: def __init__(self, input_size, hidden_size, output_size): # Initialize weights and biases self.weights_input_hidden = np.random.uniform(-1, 1, (input_size, hidden_size)) self.weights_hidden_output = np.random.uniform(-1, 1, (hidden_size, output_size)) self.bias_hidden = np.random.uniform(-1, 1, (1, hidden_size)) self.bias_output = np.random.uniform(-1, 1, (1, output_size)) def forward_propagation(self, X): # Compute hidden layer activation self.hidden_input = np.dot(X, self.weights_input_hidden) + self.bias_hidden self.hidden_output = sigmoid(self.hidden_input) # Compute output layer activation self.output_input = np.dot(self.hidden_output, self.weights_hidden_output) + self.bias_output self.output_output = sigmoid(self.output_input) return self.output_output def back_propagation(self, X, y, learning_rate): # Error in output output_error = y - self.output_output output_delta = output_error * sigmoid_derivative(self.output_output) # Error in hidden layer hidden_error = np.dot(output_delta, self.weights_hidden_output.T) hidden_delta = hidden_error * sigmoid_derivative(self.hidden_output) # Update weights and biases self.weights_hidden_output += np.dot(self.hidden_output.T, output_delta) * learning_rate self.bias_output += np.sum(output_delta, axis=0, keepdims=True) * learning_rate self.weights_input_hidden += np.dot(X.T, hidden_delta) * learning_rate self.bias_hidden += np.sum(hidden_delta, axis=0, keepdims=True) * learning_rate def train(self, X, y, epochs, learning_rate): for epoch in range(epochs): # Forward and backward propagation self.forward_propagation(X) self.back_propagation(X, y, learning_rate) # Print loss at every 100 epochs if (epoch + 1) % 100 == 0: loss = np.mean(np.square(y - self.output_output)) print(f"Epoch {epoch + 1}/{epochs}, Loss: {loss}") # Example: XOR dataset X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]]) y = np.array([[0], [1], [1], [0]]) # Network configuration input_size = 2 hidden_size = 4 output_size = 1 # Create and train the neural network nn = NeuralNetwork(input_size, hidden_size, output_size) nn.train(X, y, epochs=10000, learning_rate=0.1) # Test the network print("\nTesting the network:") for i in range(len(X)): output = nn.forward_propagation(X[i].reshape(1, -1)) print(f"Input: {X[i]}, Predicted Output: {output}, Actual Output: {y[i]}")
Leave a Comment