Untitled
unknown
plain_text
18 days ago
851 B
10
Indexable
Never
from transformers import T5Tokenizer, T5ForConditionalGeneration from sentence_transformers import SentenceTransformer, util # Initialize the T5 model for query generation model_name = 'doc2query/msmarco-t5-base-v1' tokenizer = T5Tokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name) text = "atlantic ocean temperature" input_ids = tokenizer.encode(text, max_length=100, truncation=True, return_tensors='pt') outputs = model.generate( input_ids=input_ids, max_length=64, do_sample=True, top_p=0.95, num_return_sequences=10) # Convert outputs to a list of clean questions questions = [tokenizer.decode(output, skip_special_tokens=True) for output in outputs] print("\nGenerated Queries:") for i, query in enumerate(questions): print(f'{i + 1}: {query}')
Leave a Comment