Untitled
unknown
python
2 years ago
613 B
5
Indexable
# 1) initialize a k-NN classifier with n_neighbors parameter set to best_k knn = KNeighborsClassifier(n_neighbors = 3) # 2) combine the training and validation sets (you may want to look up numpy.concatenate function for this) X = np.concatenate((X_train, X_test), axis=0) y = np.concatenate((Y_train, y_test), axis=0) # 3) train the classifier using this set knn.fit(X, y) # 4) get the predictions of the classifier on the test set y_pred = knn.predict(X_test) # 5) compute the accuracy of the predictions on the test set print('Test accuracy for k=', best_k, ' :', y_pred) # Report your result
Editor is loading...