Untitled
unknown
python
a year ago
4.7 kB
7
Indexable
import re import string import nltk from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer from collections import Counter import matplotlib.pyplot as plt from wordcloud import WordCloud import gensim from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.decomposition import TruncatedSVD # 1. Tokenization, Lemmatization, Stop words removal def preprocess_text(text): # Tokenization tokens = nltk.word_tokenize(text.lower()) # Remove punctuation tokens = [token for token in tokens if token not in string.punctuation] # Lemmatization lemmatizer = WordNetLemmatizer() tokens = [lemmatizer.lemmatize(token) for token in tokens] # Stop words removal stop_words = set(stopwords.words('english')) tokens = [token for token in tokens if token not in stop_words] return tokens # 2. TF-IDF, Bar chart, Word cloud def visualize_top_words(texts, n=10): vectorizer = TfidfVectorizer() X = vectorizer.fit_transform(texts) # Get feature names and TF-IDF scores feature_names = vectorizer.get_feature_names_out() tfidf_scores = X.toarray().sum(axis=0) # Sort by TF-IDF scores top_words = sorted(zip(feature_names, tfidf_scores), key=lambda x: x[1], reverse=True)[:n] # Bar chart word_scores = [score for word, score in top_words] word_names = [word for word, score in top_words] plt.figure(figsize=(10, 6)) plt.bar(range(n), word_scores, align='center') plt.xticks(range(n), word_names, rotation=90) plt.xlabel('Words') plt.ylabel('TF-IDF Score') plt.title('Top Words by TF-IDF') plt.show() # Word cloud word_cloud = WordCloud(width=800, height=400).generate_from_frequencies(dict(top_words)) plt.figure(figsize=(10, 6)) plt.imshow(word_cloud, interpolation='bilinear') plt.axis('off') plt.show() # 3. Word2Vec def train_word2vec(texts): sentences = [preprocess_text(text) for text in texts] model = gensim.models.Word2Vec(sentences, vector_size=100, window=5, min_count=1, workers=4) return model # 4. Autoencoder def train_autoencoder(texts): vectorizer = TfidfVectorizer() X = vectorizer.fit_transform(texts) svd = TruncatedSVD(n_components=100) X_reduced = svd.fit_transform(X) return svd, vectorizer # 5. Named Entity Recognition (NER) def perform_ner(texts): # You can use a library like spaCy or NLTK for NER pass # 6. Exploratory Data Analysis (EDA) def perform_eda(texts): # Implement your EDA analysis here pass # 7. Summarization def summarize_texts(texts): # You can use a library like NLTK or Gensim for text summarization pass # 8. GPT model def use_gpt_model(texts, task): # You can use a pre-trained GPT model like GPT-2 or GPT-3 for various tasks pass # 9. Compare results def compare_results(result1, result2): # Implement your comparison logic here pass # 10. Propose algorithm/metric change def propose_change(): # Propose your algorithm or metric change and explain the rationale pass # 11. Compare algorithm performance with different parameters def compare_algorithm_performance(algorithm, texts, params): # Implement your algorithm comparison logic here pass # 12. Document methodology and results def document_results(methodology, results): # Write your methodology and results to a Word file pass # 13. Present outputs on GitHub def present_on_github(python_files, documentation): # Upload your Python files and documentation to GitHub pass # Example usage texts = ["This is a sample text.", "Another example text."] # Preprocess texts processed_texts = [" ".join(preprocess_text(text)) for text in texts] # Visualize top words visualize_top_words(processed_texts) # Train Word2Vec model word2vec_model = train_word2vec(processed_texts) # Train Autoencoder autoencoder, vectorizer = train_autoencoder(processed_texts) # Perform NER perform_ner(processed_texts) # Perform EDA perform_eda(processed_texts) # Summarize texts summaries = summarize_texts(processed_texts) # Use GPT model gpt_results = use_gpt_model(processed_texts, "question_answering") # Compare results compare_results(word2vec_model.wv.most_similar("sample"), autoencoder.components_) # Propose algorithm/metric change propose_change() # Compare algorithm performance compare_algorithm_performance(train_word2vec, processed_texts, {"vector_size": [100, 200]}) # Document results document_results("This is the methodology.", "These are the results.") # Present on GitHub present_on_github(["script.py"], ["documentation.txt"]) ```
Editor is loading...
Leave a Comment