Untitled
user_2381398
plain_text
2 years ago
1.6 kB
5
Indexable
import cv2 import numpy as np import os # Step 1: Load images image_path = "./image" out_noise_path = "./noise_image" # Size of pixelized block block_size = 8 # Check output path integrity if not os.path.exists(out_noise_path): os.mkdir(out_noise_path) def pixelize_and_add_noise(image, block_size): row, col, ch = image.shape noisy_image = np.copy(image) for i in range(0, row, block_size): for j in range(0, col, block_size): # Pixelization: use the mean value for each block block_mean = np.mean(noisy_image[i:i+block_size, j:j+block_size], axis=(0, 1)) noisy_image[i:i+block_size, j:j+block_size] = block_mean # Randomly generate the noise RGB values noise = np.random.randint(0, 50, (ch,)) # Add the noise to the block noisy_image[i:i+block_size, j:j+block_size] += noise # Clip values to be in valid range 0-255 noisy_image = np.clip(noisy_image, 0, 255) return noisy_image for image_path1 in os.listdir(image_path): for image_path2 in os.listdir(image_path+"/"+image_path1): image = cv2.imread(image_path+"/"+image_path1+"/"+image_path2) # Step 2: Pixelize and add noise to image noisy_image = pixelize_and_add_noise(image, block_size) # Step 3: Save the noisy image # Check path integrity if not os.path.exists(out_noise_path+"/"+image_path1): os.mkdir(out_noise_path+"/"+image_path1) cv2.imwrite(out_noise_path+"/"+image_path1+"/"+image_path2, noisy_image)
Editor is loading...