Untitled

 avatar
unknown
plain_text
2 years ago
1.7 kB
5
Indexable
\documentclass[a4paper,12pt]{article}
\begin{document}
\title{\textbf{2ND ASSIGNMENT}}
\author{\\\textbf{}\\SHIBPU R DINOBUNDHOO INSTITUTIONS(COLLEGE)\\Cu Roll No:213412-22-0017.\\ Cu Reg No:412-1111-0918-21.\\College roll no:DSP/001/21.\\Semester :3rd.\\Course : B.Sc(pure general).\\Academic year:2022-23.}
\date{\today}
\maketitle
\begin{enumerate}
\item(i)\_, (ii) $\alpha$ (iii)  $\delta$
(iv) $\Delta$ (v)$\pi$
(vi)\textbackslash  \item {-}
\item \textbf {nilava\_ das}
\item (i)\{ ABC... \} (ii)/ABC...
\item  \begin{eqnarray}
p&=&2x+3y. \\
q&=&9y-z.
\end{eqnarray}
\item $$y={\frac{\sqrt{d^2-4fc}}{2c}}$$
\item $${\frac{d}{dy}}(2e^y)=2e^y.$$
\item
\item $${\frac{d}{dx}}
e^{2x+3}=2e^{2x+3}$$
\item $${\frac{dy}{dx}}+40x=2.$$
\item $$\int_0^4 (9x+1)dx$$
\item $${8\frac{dy}{dx}}+3x+2=0$$
\item $$\int_2^{12} f(x)dx$$
\item \section{Integral calculus}
\subsection{Evaluation of definite integration}
Evaluation of definite integration by substitution.
fundamental theorem of integral calculus.
\subsection{Improper integral}
Improper integral of first kind.
Improper integral of second kind. \section{Numerical methods}
\subsection{Finite Differences and Operators}
Forward Differences,
Backward Differences
\subsection{interpolation}
the general problems of interpolation.
polynomial interpretation and interpolating polynomial.
\item \begin{tabular}{|c|c|c|c|c|}
\hline
Name of the students& paper 1&paper 2g&paper 3&\\ \hline Avik sarkar&65&72&79\\ \hline Sumon roy&88&82&92.
\end{tabular}
\item \begin{tabular}{|l|l|}
no of students boys & no of students girls \\ 25 & 18 \\ 30 & 22 \\  55 & 41 \\
\end{tabular}
\end{enumerate}
\end{document}
Editor is loading...
Leave a Comment