Untitled
unknown
plain_text
2 years ago
1.7 kB
5
Indexable
\documentclass[a4paper,12pt]{article} \begin{document} \title{\textbf{2ND ASSIGNMENT}} \author{\\\textbf{}\\SHIBPU R DINOBUNDHOO INSTITUTIONS(COLLEGE)\\Cu Roll No:213412-22-0017.\\ Cu Reg No:412-1111-0918-21.\\College roll no:DSP/001/21.\\Semester :3rd.\\Course : B.Sc(pure general).\\Academic year:2022-23.} \date{\today} \maketitle \begin{enumerate} \item(i)\_, (ii) $\alpha$ (iii) $\delta$ (iv) $\Delta$ (v)$\pi$ (vi)\textbackslash \item {-} \item \textbf {nilava\_ das} \item (i)\{ ABC... \} (ii)/ABC... \item \begin{eqnarray} p&=&2x+3y. \\ q&=&9y-z. \end{eqnarray} \item $$y={\frac{\sqrt{d^2-4fc}}{2c}}$$ \item $${\frac{d}{dy}}(2e^y)=2e^y.$$ \item \item $${\frac{d}{dx}} e^{2x+3}=2e^{2x+3}$$ \item $${\frac{dy}{dx}}+40x=2.$$ \item $$\int_0^4 (9x+1)dx$$ \item $${8\frac{dy}{dx}}+3x+2=0$$ \item $$\int_2^{12} f(x)dx$$ \item \section{Integral calculus} \subsection{Evaluation of definite integration} Evaluation of definite integration by substitution. fundamental theorem of integral calculus. \subsection{Improper integral} Improper integral of first kind. Improper integral of second kind. \section{Numerical methods} \subsection{Finite Differences and Operators} Forward Differences, Backward Differences \subsection{interpolation} the general problems of interpolation. polynomial interpretation and interpolating polynomial. \item \begin{tabular}{|c|c|c|c|c|} \hline Name of the students& paper 1&paper 2g&paper 3&\\ \hline Avik sarkar&65&72&79\\ \hline Sumon roy&88&82&92. \end{tabular} \item \begin{tabular}{|l|l|} no of students boys & no of students girls \\ 25 & 18 \\ 30 & 22 \\ 55 & 41 \\ \end{tabular} \end{enumerate} \end{document}
Editor is loading...
Leave a Comment