Untitled
unknown
plain_text
a month ago
1.0 kB
4
Indexable
columns_to_drop = ["TransactionID", "TransactionAmt_bin", "TransactionDT_bin", "fraud_count", "stratify_label", "label", 'k1', 'k2', 'k3', 'k4', 'k5','isFraud'] # Ensure all columns exist before dropping columns_to_drop = [col for col in columns_to_drop if col in train_fold_1.columns] # Drop columns train_fold_1_X = train_fold_1.drop(columns=columns_to_drop, errors='ignore') train_fold_1_Y = train_fold_1["isFraud"] test_fold_1_X = test_fold_1.drop(columns=columns_to_drop, errors='ignore') test_fold_1_Y = test_fold_1["isFraud"] from sklearn.preprocessing import LabelEncoder # Define categorical features categorical_features = [ "ProductCD", "card1", "card2", "card3", "card4", "card5", "card6", "addr1", "addr2", "P_emaildomain", "R_emaildomain", "M1", "M2", "M3", "M4", "M5", "M6", "M7", "M8", "M9", "DeviceType", "DeviceInfo" ] + [f"id_{i}" for i in range(12, 39)] # Adding id_12 to id_38 from sklearn.ensemble import RandomForestClassifier rf_model = RandomForestClassifier()
Editor is loading...
Leave a Comment