Untitled
unknown
plain_text
7 months ago
30 kB
4
Indexable
import pandas as pd
import numpy as np
from datetime import datetime
from dateutil.relativedelta import relativedelta
from scipy.stats import zscore
###############################################
# 1. Data Loading (Filtering Out Weekends)
###############################################
def load_price_data(filepath):
"""
Load historical prices from an Excel file.
Assumes that the first column is dates and the remaining columns are tickers.
Removes weekend data.
"""
df = pd.read_excel(filepath, index_col=0)
df.index = pd.to_datetime(df.index)
df = df.sort_index()
# Filter out weekends (Saturday=5, Sunday=6)
df = df[df.index.dayofweek < 5]
return df
def load_macro_data(filepath):
"""
Load macro indicators from an Excel file.
Loads VIX and VIX3M from 'Eq' sheet, LF98TRUU Index from 'FI' sheet,
and other macro indicators from 'Macro' sheet.
Removes weekend data.
Also computes slopes for selected macro indicators.
"""
# VIX data
vix_data = pd.read_excel(filepath, sheet_name='Eq', index_col=0, parse_dates=True, usecols=[0, 3, 4, 5])
vix_data.columns = ['VIX9D', 'VIX', 'VIX3M']
vix_data = vix_data[vix_data.index.dayofweek < 5]
# FI data
cdx_data = pd.read_excel(filepath, sheet_name='FI', index_col=0, parse_dates=True, usecols=[0, 2], skiprows=1)
cdx_data.columns = ['LF98TRUU']
cdx_data = cdx_data[cdx_data.index.dayofweek < 5]
# Macro data (assumed to include columns "CESIUSD Index", "INJCJC Index", ".HG/GC G Index", and "Consumer Confidence")
macro_data = pd.read_excel(filepath, sheet_name='Macro', index_col=0, parse_dates=True, usecols=range(8), skiprows=1)
macro_data = macro_data[macro_data.index.dayofweek < 5]
# Compute slopes for selected macro indicators.
macro_data["Surprise Index Slope"] = macro_data["CESIUSD Index"].diff()
macro_data["Jobless Claims Slope"] = macro_data["INJCJC Index"].diff()
macro_data["Copper Gold Slope"] = macro_data['.HG/GC G Index'].diff()
# Assume "Consumer Confidence" column already exists.
combined_data = pd.concat([vix_data, cdx_data, macro_data], axis=1)
combined_data = combined_data.fillna(method='ffill').fillna(method='bfill')
combined_data = combined_data.sort_index() # ensure sorted index
return combined_data
###############################################
# 2. Helper: Observation Dates (Monthly)
###############################################
def get_observation_dates(prices, start_date, end_date, rebalance_period):
"""
Returns observation dates using the trading calendar.
For a monthly rebalancing (rebalance_period=1), for each target month,
it starts at the first calendar day and checks sequentially until it finds a trading day.
Parameters:
prices: DataFrame with a DatetimeIndex containing trading days.
start_date: Starting date (should be a valid trading day).
end_date: End date for observations.
rebalance_period: Number of months between rebalances.
Returns:
List of observation dates.
"""
dates = []
current_date = start_date
while current_date < end_date:
# Move forward by the rebalance period (in months) and set candidate to the first day of that month
candidate_date = (current_date + relativedelta(months=rebalance_period)).replace(day=1)
# Check sequentially until a trading day is found in prices index
while candidate_date not in prices.index:
candidate_date += pd.Timedelta(days=1)
# Safety: if candidate_date moves into the next month, break out (unlikely if market is active)
if candidate_date.month != (current_date + relativedelta(months=rebalance_period)).month:
candidate_date = None
break
if candidate_date is None or candidate_date > end_date:
break
dates.append(candidate_date)
current_date = candidate_date
return dates
###############################################
# 3. Portfolio Initialization
###############################################
def initialize_portfolio(prices, date, tickers, initial_aum):
"""
On the start date, invest equal notional amounts in each asset.
Returns a dictionary mapping ticker -> quantity.
"""
portfolio = {}
mask = prices.index < date
prev_date = prices.index[mask][-1]
allocation = initial_aum / len(tickers)
for ticker in tickers:
price = prices.loc[prev_date, ticker]
portfolio[ticker] = allocation / price
return portfolio
###############################################
# 4. Lookback Metric Computation
###############################################
def compute_lookback_metric(prices, current_date, ticker, lookback_period, metric_type='simple'):
"""
Computes the lookback metric for one ticker using previous day's data.
"""
prices = prices.sort_index()
mask = prices.index < current_date
prev_date = prices.index[mask][-1]
lookback_date = prev_date - relativedelta(months=lookback_period)
current_price = prices[ticker].asof(prev_date) # Use previous day's price
lookback_price = prices[ticker].asof(lookback_date)
if pd.isna(current_price) or pd.isna(lookback_price):
raise ValueError(f"Missing price data for {ticker} on {prev_date} or {lookback_date}.")
if metric_type == 'simple':
metric = (current_price / lookback_price) - 1
elif metric_type == 'sma':
window = prices[ticker].loc[lookback_date:current_date]
if window.empty:
raise ValueError(f"No price data for {ticker} between {lookback_date} and {current_date}.")
sma = window.mean()
metric = (current_price - sma) / sma
else:
raise ValueError("Invalid metric type. Choose 'simple' or 'sma'.")
return metric
###############################################
# 5. Ranking Assets by Momentum
###############################################
def rank_assets(prices, current_date, tickers, lookback_period, metric_type):
"""
For a given observation date, compute the chosen lookback metric for each asset,
then sort (in descending order) so that the highest momentum gets rank 1.
Returns:
sorted_tickers: list of tickers in sorted order (best first)
ranks: dictionary mapping ticker -> rank (1 is best)
metrics: dictionary mapping ticker -> computed metric value
"""
metrics = {}
for ticker in tickers:
metric = compute_lookback_metric(prices, current_date, ticker, lookback_period, metric_type)
metrics[ticker] = metric
sorted_tickers = sorted(metrics, key=metrics.get, reverse=True)
ranks = {ticker: rank+1 for rank, ticker in enumerate(sorted_tickers)}
return sorted_tickers, ranks, metrics
###############################################
# 6. Compute Current Portfolio Value
###############################################
def compute_portfolio_value(portfolio, prices, current_date):
"""
Returns the portfolio AUM as of current_date.
"""
value = 0
for ticker, quantity in portfolio.items():
price = prices.loc[current_date, ticker]
value += quantity * price
return value
###############################################
# 7. Rebalance the Momentum Portfolio
###############################################
def rebalance_portfolio(portfolio, prices, current_date, tickers, sorted_tickers,
internal_rebalance_ratios, rebalance_ratio):
prev_date = prices.index[prices.index < current_date][-1]
prev_prices = prices.loc[prev_date]
curr_prices = prices.loc[current_date]
portfolio_value = sum(portfolio[ticker] * prev_prices[ticker] for ticker in tickers)
rebalance_amount = portfolio_value * rebalance_ratio
target_trades = {ticker: rebalance_amount * internal_rebalance_ratios[i]
for i, ticker in enumerate(sorted_tickers)}
total_sold = 0
actual_trades = {}
for ticker, target_trade in target_trades.items():
execution_price = curr_prices[ticker]
if target_trade < 0:
available_notional = portfolio[ticker] * curr_prices[ticker]
sell_target = abs(target_trade)
actual_sell = min(available_notional, sell_target)
actual_trades[ticker] = -actual_sell
total_sold += actual_sell
else:
actual_trades[ticker] = 0
total_buy_target = sum(t for t in target_trades.values() if t > 0)
if total_buy_target > 0:
for ticker, target_trade in target_trades.items():
if target_trade > 0:
proportion = target_trade / total_buy_target
buy_amount = total_sold * proportion
actual_trades[ticker] = buy_amount
new_portfolio = portfolio.copy()
for ticker, trade_notional in actual_trades.items():
execution_price = curr_prices[ticker]
qty_change = trade_notional / execution_price
new_portfolio[ticker] += qty_change
return new_portfolio, actual_trades, portfolio_value
def adjust_overweight(portfolio, prices, current_date, sorted_tickers, threshold=0.70):
prev_date = prices.index[prices.index < current_date][-1]
prev_prices = prices.loc[prev_date]
curr_prices = prices.loc[current_date]
portfolio_value = sum(portfolio[ticker] * prev_prices[ticker] for ticker in portfolio)
weights = {ticker: (portfolio[ticker] * prev_prices[ticker]) / portfolio_value
for ticker in portfolio}
new_portfolio = portfolio.copy()
adjustments = {}
for overweight in portfolio:
if weights[overweight] > threshold:
extra_weight = weights[overweight] - threshold
extra_value = extra_weight * portfolio_value
execution_price_over = curr_prices[overweight]
qty_reduce = extra_value / execution_price_over
new_portfolio[overweight] -= qty_reduce
adjustments[overweight] = {'removed_qty': qty_reduce, 'reallocated': {}}
remaining_value = extra_value
for candidate in sorted_tickers:
if candidate == overweight:
continue
candidate_value = new_portfolio[candidate] * curr_prices[candidate]
candidate_weight = candidate_value / portfolio_value
if candidate_weight < threshold:
capacity = (threshold - candidate_weight) * portfolio_value
allocation = min(remaining_value, capacity)
qty_add = allocation / curr_prices[candidate]
new_portfolio[candidate] += qty_add
adjustments[overweight]['reallocated'][candidate] = qty_add
remaining_value -= allocation
if remaining_value <= 0:
break
if remaining_value > 0:
adjustments[overweight]['leftover_value'] = remaining_value
return new_portfolio
###############################################
# 8. VIX-based Allocation Function
###############################################
def momentum_allocation(vix_9d, vix_mean, vix_std, max_alloc=1.0, min_alloc=0.6):
"""
Maps composite score to a target momentum allocation fraction using a piecewise linear approach.
- If vix_9d < vix_mean + vix_std, return max_alloc (fully risk on).
- If vix_9d >= vix_mean + 2*vix_std, return min_alloc (fully risk off).
- Otherwise, return 0.8 as an intermediate allocation.
"""
if vix_9d < vix_mean + vix_std:
return max_alloc
elif (vix_9d >= vix_mean + vix_std) and (vix_9d < vix_mean + 2*vix_std):
return 0.8
else:
return min_alloc
###############################################
# 9. Compute FI Signal Functions
###############################################
def compute_fi_target_allocation(macro_data, current_date, fi_max_alloc, fi_min_alloc, slope_threshold=0.01):
"""
Computes the FI target allocation based on a refined logic using only the 8-day and 13-day EMAs.
The computation uses data only up to the previous trading day.
Returns:
target_alloc: the target allocation.
signal_label: a string label ("risk-on", "neutral", or "risk-off").
"""
# Determine the reference date as the previous trading day.
available_dates = macro_data.index[macro_data.index < current_date]
if len(available_dates) == 0:
return fi_max_alloc, "risk-on"
ref_date = available_dates[-1]
fi_8 = macro_data["FI_EMA_8"].asof(ref_date)
fi_13 = macro_data["FI_EMA_13"].asof(ref_date)
if pd.isna(fi_8) or pd.isna(fi_13):
return fi_max_alloc, "risk-on"
# Compute slope of FI_EMA_8 using ref_date.
available_ref_dates = macro_data.loc[:ref_date].index
if len(available_ref_dates) < 2:
slope = 0
else:
prev_ref_date = available_ref_dates[-2]
fi_8_prev = macro_data["FI_EMA_8"].asof(prev_ref_date)
slope = (fi_8/fi_8_prev) - 1
if fi_8 < fi_13:
return fi_max_alloc, "risk-on"
else: # fi_8 > fi_13
if slope > slope_threshold:
return fi_min_alloc, "risk-off"
else:
return fi_max_alloc, "no signal"
###############################################
# 10. Simulation: VIX-based (current) Strategy with Signal Logging
###############################################
def simulate_strategy(prices, macro_data, eq_tickers, fi_tickers, alts_tickers,
initial_aum, start_date, end_date,
rebalance_period, rebalance_ratio,
lookback_period, metric_type,
internal_rebalance_ratios,
macro_max_alloc=1.0, macro_min_alloc=0.6):
"""
Runs the simulation with:
- Daily macro overlay adjustments
- Monthly momentum rebalancing based on total returns.
This version computes and logs the following signals daily:
• VIX signal (and corresponding target allocation)
• Composite macro signal (and target allocation)
• FI signal (and target allocation)
"""
tickers = eq_tickers + fi_tickers + alts_tickers
monthly_dates = get_observation_dates(prices, start_date, end_date, rebalance_period)
daily_dates = prices.index.sort_values()
# initiate vars
vix_target_alloc = macro_max_alloc # Default to max allocation
vix_signal = "risk-on" # Default to risk-on
macro_target_alloc = macro_max_alloc
macro_signal = "risk-on"
fi_target_alloc = macro_max_alloc
fi_signal = "no signal"
# Prepare macro data: compute VIX EMA fields
macro_data = macro_data.copy()
macro_data['VIX 1M 3M_Spread'] = macro_data['VIX'] - macro_data['VIX3M']
macro_data['VIX1M_EMA'] = macro_data["VIX 1M 3M_Spread"].ewm(span=5, adjust=False).mean()
macro_data["Mean"] = macro_data['VIX1M_EMA'].rolling(window=504).mean()
macro_data["Std"] = macro_data['VIX1M_EMA'].rolling(window=504).std()
# Precompute FI EMAs
macro_data["FI_EMA_8"] = macro_data["LF98TRUU"].ewm(span=8, adjust=False).mean()
macro_data["FI_EMA_13"] = macro_data["LF98TRUU"].ewm(span=13, adjust=False).mean()
macro_data["FI_EMA_21"] = macro_data["LF98TRUU"].ewm(span=21, adjust=False).mean()
portfolio = initialize_portfolio(prices, start_date, tickers, initial_aum)
CASH = 0.0
current_regime = 'risk-on'
target_alloc = macro_max_alloc
previous_regime = current_regime
prev_total_aum = initial_aum
ret = 0.0
previous_regime = current_regime
results = []
prev_total_aum = initial_aum
# Filter daily_dates to ensure they're within range
daily_dates = daily_dates[(daily_dates >= start_date) & (daily_dates <= end_date)]
for current_date in daily_dates:
daily_adjustment_note = "No adjustment"
cash_adjustment = 0
# Determine reference date (previous trading day)
available_macro_dates = macro_data.index[macro_data.index < current_date]
print
if len(available_macro_dates) == 0:
ref_date = current_date
else:
ref_date = available_macro_dates[-1]
# Calculate FI metrics
fi_8 = macro_data["FI_EMA_8"].asof(ref_date)
fi_13 = macro_data["FI_EMA_13"].asof(ref_date)
# Calculate FI slope
available_ref_dates = macro_data.loc[:ref_date].index
if len(available_ref_dates) < 2:
fi_slope = 0
else:
prev_ref_date = available_ref_dates[-2]
fi_8_prev = macro_data["FI_EMA_8"].asof(prev_ref_date)
fi_slope = (fi_8/fi_8_prev) - 1
# Get VIX metrics
vix_1m = macro_data['VIX'].asof(ref_date)
vix_3m = macro_data['VIX3M'].asof(ref_date)
# Calculate z-scores
vix_window = macro_data.loc[:ref_date].tail(504) # Using 2-year window (504 trading days)
vix_1m_zscore = zscore(vix_window['VIX'])[-1] if len(vix_window) > 0 else np.nan
vix_3m_zscore = zscore(vix_window['VIX3M'])[-1] if len(vix_window) > 0 else np.nan
# Daily macro signal computation and adjustment using ref_date
try:
vix_ema = macro_data['VIX1M_EMA'].asof(ref_date)
vix_mean = macro_data['Mean'].asof(ref_date)
vix_std = macro_data['Std'].asof(ref_date)
except Exception as e:
raise ValueError(f"Error retrieving VIX data for {current_date}: {e}")
vix_target_alloc = momentum_allocation(vix_ema, vix_mean, vix_std,
max_alloc=macro_max_alloc,
min_alloc=macro_min_alloc)
if vix_ema >= (vix_mean + vix_std):
vix_signal = 'risk-off'
elif vix_ema <= (vix_mean - vix_std):
vix_signal = 'risk-on'
else:
vix_signal = 'no-signal'
# Compute FI Signal using data up to ref_date
fi_target_alloc, fi_signal = compute_fi_target_allocation(
macro_data, current_date, macro_max_alloc, macro_min_alloc, slope_threshold=0.01)
# ---- Daily Check: Force regime if SPY weight is low and current regime is risk-off ----
mask = prices.index < current_date
prev_date = prices.index[mask][-1]
mom_value = compute_portfolio_value(portfolio, prices, prev_date)
spy_price = prices.loc[prev_date, 'SPY US Equity']
spy_qty = portfolio.get('SPY US Equity', 0)
spy_weight = (spy_price * spy_qty) / mom_value if mom_value > 0 else 0
hyg_price = prices.loc[prev_date, 'HYG US Equity']
hyg_qty = portfolio.get('HYG US Equity', 0)
hyg_weight = (hyg_price * hyg_qty) / mom_value if mom_value > 0 else 0
if (fi_signal == 'risk-off' or vix_signal == 'risk-off'):
if ((spy_weight + hyg_weight) < 0.40):
current_regime = 'risk-on'
target_alloc = 1.0
daily_adjustment_note = "Forced regime to risk-on & target alloc to 1 due to HYG + SPY weight < 40%"
else:
current_regime = 'risk-off'
target_alloc = min(fi_target_alloc, vix_target_alloc)
else:
current_regime = 'risk-on'
# Use VIX signal for adjustment if regime changed.
if current_regime != previous_regime:
mask = prices.index < current_date
prev_date = prices.index[mask][-1]
mom_value = compute_portfolio_value(portfolio, prices, prev_date)
total_investment = mom_value + CASH
desired_mom_value = target_alloc * total_investment
mom_value = compute_portfolio_value(portfolio, prices, current_date)
if mom_value > desired_mom_value:
excess = mom_value - desired_mom_value
cash_adjustment = excess
for ticker in portfolio:
price = prices.loc[current_date, ticker]
ticker_value = portfolio[ticker] * price
sell_amount = (ticker_value / mom_value) * excess
qty_to_sell = sell_amount / price
portfolio[ticker] -= qty_to_sell
CASH += excess
daily_adjustment_note = f"Adj: Sold excess {excess:.2f} to CASH."
elif mom_value < desired_mom_value and CASH > 0:
shortage = desired_mom_value - mom_value
available = min(shortage, CASH)
cash_adjustment = -available
for ticker in portfolio:
price = prices.loc[current_date, ticker]
ticker_value = portfolio[ticker] * price
target_weight = ticker_value / mom_value if mom_value > 0 else 1/len(portfolio)
invest_amount = target_weight * available
qty_to_buy = invest_amount / price
portfolio[ticker] += qty_to_buy
CASH -= available
daily_adjustment_note = f"Adj: Bought using {available:.2f} CASH."
# Monthly momentum rebalancing block.
if current_date in monthly_dates:
sorted_tickers, ranks, metrics = rank_assets(
prices, current_date, tickers, lookback_period, metric_type)
portfolio, trades, pre_rebalance_value = rebalance_portfolio(
portfolio, prices, current_date, tickers, sorted_tickers,
internal_rebalance_ratios, rebalance_ratio)
mask = prices.index < current_date
prev_date = prices.index[mask][-1]
mom_value = compute_portfolio_value(portfolio, prices, prev_date)
total_aum = mom_value + CASH
desired_mom_value = target_alloc * total_aum
mom_value = compute_portfolio_value(portfolio, prices, current_date)
if mom_value > desired_mom_value:
excess = mom_value - desired_mom_value
cash_adjustment = excess
for ticker in portfolio:
price = prices.loc[current_date, ticker]
ticker_value = portfolio[ticker] * price
sell_amount = (ticker_value / mom_value) * excess
qty_to_sell = sell_amount / price
portfolio[ticker] -= qty_to_sell
CASH += excess
daily_adjustment_note = f"Monthly: Sold excess {excess:.2f} to CASH."
elif mom_value < desired_mom_value and CASH > 0:
shortage = desired_mom_value - mom_value
available = min(shortage, CASH)
cash_adjustment = -available
for ticker in portfolio:
price = prices.loc[current_date, ticker]
ticker_value = portfolio[ticker] * price
target_weight = ticker_value / mom_value if mom_value > 0 else 1/len(portfolio)
invest_amount = target_weight * available
qty_to_buy = invest_amount / price
portfolio[ticker] += qty_to_buy
CASH -= available
daily_adjustment_note = f"Monthly: Bought using {available:.2f} CASH."
else:
daily_adjustment_note = "Monthly: No cash adjustment needed."
# Overweight Adjustment Process.
portfolio = adjust_overweight(portfolio, prices, current_date, sorted_tickers, threshold=0.70)
# Recalculate portfolio value after overweight adjustments.
mom_value = compute_portfolio_value(portfolio, prices, current_date)
total_aum = mom_value + CASH
ret = (total_aum - prev_total_aum) / prev_total_aum
prev_total_aum = total_aum
# Log monthly rebalancing event with additional metrics
row = {
'Date': current_date,
'Momentum AUM': mom_value,
'CASH': CASH,
'Total AUM': total_aum,
'Current Regime (VIX)': current_regime,
'VIX Target': vix_target_alloc,
'VIX Signal': vix_signal,
'FI Target': fi_target_alloc,
'FI Signal': fi_signal,
'Target Momentum Alloc': target_alloc,
'Adjustment Note': daily_adjustment_note,
'Cash Adjustment': cash_adjustment,
'Return': ret,
'Event': 'Monthly Rebalance',
'FI_EMA_8': fi_8,
'FI_EMA_13': fi_13,
'FI_Slope': fi_slope,
'VIX_1M': vix_1m,
'VIX_3M': vix_3m,
'VIX_1M_ZScore': vix_1m_zscore,
'VIX_3M_ZScore': vix_3m_zscore
}
for ticker in tickers:
price = prices.loc[current_date, ticker]
qty = portfolio[ticker]
notional = qty * price
row[f'qty_{ticker}'] = qty
row[f'notional_{ticker}'] = notional
row[f'weight_{ticker}'] = (notional / mom_value) if mom_value > 0 else np.nan
row[f'rank_{ticker}'] = ranks.get(ticker, np.nan)
row[f'metric_{ticker}'] = metrics.get(ticker, np.nan)
row[f'trade_{ticker}'] = trades.get(ticker, 0)
results.append(row)
else:
# Log daily signal checks with additional metrics
current_mom_value = compute_portfolio_value(portfolio, prices, current_date)
total_aum = current_mom_value + CASH
ret = (total_aum - prev_total_aum) / prev_total_aum if prev_total_aum > 0 else 0
prev_total_aum = total_aum
row = {
'Date': current_date,
'Momentum AUM': current_mom_value,
'CASH': CASH,
'Total AUM': total_aum,
'Current Regime (VIX)': current_regime,
'VIX Target': vix_target_alloc,
'VIX Signal': vix_signal,
'FI Target': fi_target_alloc,
'FI Signal': fi_signal,
'Target Momentum Alloc': target_alloc,
'Adjustment Note': daily_adjustment_note,
'Cash Adjustment': cash_adjustment,
'Return': ret,
'Event': 'Daily Check',
'FI_EMA_8': fi_8,
'FI_EMA_13': fi_13,
'FI_Slope': fi_slope,
'VIX_1M': vix_1m,
'VIX_3M': vix_3m,
'VIX_1M_ZScore': vix_1m_zscore,
'VIX_3M_ZScore': vix_3m_zscore
}
for ticker in tickers:
price = prices.loc[current_date, ticker]
qty = portfolio[ticker]
notional = qty * price
row[f'qty_{ticker}'] = qty
row[f'notional_{ticker}'] = notional
row[f'weight_{ticker}'] = (notional / current_mom_value) if current_mom_value > 0 else np.nan
row[f'rank_{ticker}'] = np.nan
row[f'metric_{ticker}'] = np.nan
row[f'trade_{ticker}'] = 0
results.append(row)
result_df = pd.DataFrame(results)
result_df.set_index('Date', inplace=True)
return result_df
###############################################
# 11. Main – Example Usage
###############################################
if __name__ == '__main__':
# Define asset tickers.
eq_tickers = ['SPY US Equity']
fi_tickers = ['TLT US Equity', 'HYG US Equity']
alts_tickers = ['GLD US Equity', 'SHV US Equity']
initial_aum = 100e6 # 100 million
start_date = pd.to_datetime('2008-01-01')
end_date = pd.to_datetime('2025-02-01')
rebalance_period = 1 # monthly (or adjust as desired)
rebalance_ratio = 0.1 # 20% of current momentum AUM rebalanced each period
lookback_period = 6
metric_type = 'simple'
internal_rebalance_ratios = [0.8, 0.2, 0, -0.2, -0.8]
# File paths (adjust these to your environment).
price_filepath = r"\\asiapac.nom\data\MUM\IWM\India_IWM_IPAS\Reet\Momentum Strategy\Codes\Historic Prices.xlsx"
macro_filepath = r"\\asiapac.nom\data\MUM\IWM\India_IWM_IPAS\Reet\Momentum Strategy\Momentum Strategy Overlay Data.xlsx"
prices = load_price_data(price_filepath)
macro_data = load_macro_data(macro_filepath)
# Run simulation.
result_df = simulate_strategy(prices, macro_data,
eq_tickers, fi_tickers, alts_tickers,
initial_aum, start_date, end_date,
rebalance_period, rebalance_ratio,
lookback_period, metric_type,
internal_rebalance_ratios,
macro_max_alloc=1.0, macro_min_alloc=0.6)
pd.set_option('display.float_format', lambda x: f'{x:,.2f}')
print(result_df)Editor is loading...
Leave a Comment