Untitled
unknown
plain_text
9 months ago
1.6 kB
4
Indexable
results = []
for i in tqdm(range(0, len(dataset), batch_size)):
# Prepare batch inputs
batch_inputs_raw = dataset[i : i + batch_size]
batch_texts = [
self.processor.apply_chat_template(
input_raw["messages"], add_generation_prompt=True
)
for input_raw in batch_inputs_raw
]
batch_images = [
[load_image(input_raw["image_path"], model.device)] for input_raw in batch_inputs_raw
]
start_time = time.time()
# Process batch
inputs = self.processor(
batch_images,
batch_texts,
add_special_tokens=False,
return_tensors="pt",
padding=True,
).to(model.device)
end_time = time.time()
print(f"Time taken for processing batch: {end_time - start_time} seconds")
start_time = time.time()
with torch.no_grad():
outputs = model.generate(
**inputs, max_new_tokens=256, do_sample=False, top_p=None
)
end_time = time.time()
print(f"Time taken for generating batch: {end_time - start_time} seconds")
start_time = time.time()
output_strs = self.processor.batch_decode(outputs, skip_special_tokens=True)
end_time = time.time()
print(f"Time taken for decoding batch: {end_time - start_time} seconds")Editor is loading...
Leave a Comment