Untitled
unknown
plain_text
2 days ago
1.4 kB
2
Indexable
graph TD A[Start: Data Collection & Preparation] --> B{Retrieve Plate Request History}; B --> C[Extract Data from Inventory Management System (IMS)]; C --> D[Filter and Clean Data (e.g., remove outliers, handle missing values)]; D --> E[Aggregate Data by District Office and Time Period (e.g., weekly, monthly)]; E --> F[Feature Engineering (e.g., create time-based features, seasonal indicators)]; F --> G[Data Partitioning (Train/Test/Validation)]; G --> H[Model Selection & Training]; H --> I{Choose Forecasting Model (e.g., ARIMA, Prophet, LSTM)}; I -- ARIMA/Prophet/LSTM --> J[Train Model with Training Data]; J --> K[Evaluate Model Performance (using Test/Validation Data)]; K --> L{Performance Acceptable?}; L -- Yes --> M[Deploy Model]; L -- No --> H; M --> N[Generate Forecasts (for each District Office)]; N --> O[Visualize Forecasts (e.g., charts, tables)]; O --> P[Provide Forecast Reports to Production Planning & Inventory Teams]; P --> Q[Update Production Plan based on Forecasts]; Q --> R[Update Inventory Management System with Predicted Demand]; R --> S[End: Ongoing Monitoring & Model Retraining]; S --> B; style A fill:#f9f,stroke:#333,stroke-width:2px style M fill:#90EE90,stroke:#333,stroke-width:2px style L fill:#FFFFE0,stroke:#333,stroke-width:2px style I fill:#FFFFE0,stroke:#333,stroke-width:2px
Editor is loading...
Leave a Comment