Untitled
unknown
plain_text
9 months ago
1.4 kB
5
Indexable
graph TD
A[Start: Data Collection & Preparation] --> B{Retrieve Plate Request History};
B --> C[Extract Data from Inventory Management System (IMS)];
C --> D[Filter and Clean Data (e.g., remove outliers, handle missing values)];
D --> E[Aggregate Data by District Office and Time Period (e.g., weekly, monthly)];
E --> F[Feature Engineering (e.g., create time-based features, seasonal indicators)];
F --> G[Data Partitioning (Train/Test/Validation)];
G --> H[Model Selection & Training];
H --> I{Choose Forecasting Model (e.g., ARIMA, Prophet, LSTM)};
I -- ARIMA/Prophet/LSTM --> J[Train Model with Training Data];
J --> K[Evaluate Model Performance (using Test/Validation Data)];
K --> L{Performance Acceptable?};
L -- Yes --> M[Deploy Model];
L -- No --> H;
M --> N[Generate Forecasts (for each District Office)];
N --> O[Visualize Forecasts (e.g., charts, tables)];
O --> P[Provide Forecast Reports to Production Planning & Inventory Teams];
P --> Q[Update Production Plan based on Forecasts];
Q --> R[Update Inventory Management System with Predicted Demand];
R --> S[End: Ongoing Monitoring & Model Retraining];
S --> B;
style A fill:#f9f,stroke:#333,stroke-width:2px
style M fill:#90EE90,stroke:#333,stroke-width:2px
style L fill:#FFFFE0,stroke:#333,stroke-width:2px
style I fill:#FFFFE0,stroke:#333,stroke-width:2pxEditor is loading...
Leave a Comment