Untitled
unknown
matlab
3 years ago
3.0 kB
7
Indexable
%% comp3_24 close all clear all N=500; [P,u] = markov(N, 7/8, 7/8); var_ee = 1; var_ww = 4; b=20; rng (0); N = 10000; ee = var_ee*randn(N, 1 ) ; ww = var_ww*rand(N, 1); A0 = 1; A1 = linspace( A0,A0, N); y = zeros(N,1); Re = [ 1e-6 0 ; 0 1e-6]; Rw = 0.1; for k=2:N % Implement filter by hand to allow a1 to change. y(k) = ee(k) + ww(k) + b*u(k) + A0*y(k-1); end % Plot realisation. figure plot(y) title( 'Realisation of an hittepåsakmojäng-process' ) ylabel('Amplitude') xlabel('Time') xlim([1 N]) figure subplot(2,1,1) plot(y(end-100-2:end-2)) subplot(2,1,2) plot(u(end-100-2:end-2)) %% %y = tar2; % Define the state space equations . A = [1 0 : 0 1]; Re = [ 0.004 0 ; 0 0 ] ; % State covariance matrix Rw = 1.25; % Observation variance % Set some initialvalues Rxx_1 = 10*eye ( 2 ) ; % Initialstate variance xtt_1 = [ 0 0 ]'; % Initialstatevalues %xtt_1 --> x_{t|t-1} %xt = zeros(2,N); % x_{t|t} initial state % Vectors to store values in Xsave = zeros( 2 ,N) ; % Stored states ehat = zeros( 1 ,N) ; % Prediction residual yt1 = zeros( 1 ,N) ; % One s t e p p r e d i c t i o n yt2 = zeros( 1 ,N) ; % Two s t e p p r e d i c t i o n % The f i l t e r use data up to t ime t-1 to predictvalue at t, % then update using the prediction error. Why do we start % from t=3? Why stop at N-2? for t=3:N-2 Ct = [ -y(t-1) -y(t-2) ] ; %C_{t|t-1} yhat(t) = Ct*xtt_1; %y_{t|t-1} = Ct*x_{t|t-1} ehat(t) = y(t)-yhat(t); % e_t = y_t - y_{t|t-1} xtt_1 = A.*Xsave(:,t-1) + b.*u(:,t-1); % x_{t|t-1} = A x_{t-1|t-1} % Update Ryy = Ct*Rxx_1*Ct' + Rw; % R^{yy}_{t|t-1} = Ct*R_{t|t-1}^{x,x} + Rw Kt = Rxx_1*Ct'/Ryy; % K_t = R^{x,x}_{t|t-1} C^T inv( R_{t|t-1}^{y,y} ) xt_t = xtt_1 + Kt*(ehat(t)); % x_{t|t} = x_{t|t-1} + K_t ( y_t - Cx_{t|t-1} ) Rxx = Rxx_1 - Kt*Ryy*Kt'; % R{xx}_{t|t} = R^{x,x}_{t|t-1} - K_t R_{t|t-1}^{y,y} K_t^T % Predict the nextstate %xt_t1 = A*xt_t; % x_{t+1|t} HÄR KAN VARA EN B*U_t term om man har input??? Rxx_1 = A*Rxx*A' + Re; % R^{x,x}_{t+1|t} = A R^{x,x}_{t|t} A^T + Re % Form 2 stepprediction . Ignore this part at first . % Ct1 = [ -y(t) -y(t-1) ] ; % yt1(t+1) = Ct1*xt_t; % Ct2 = [ -yt1(t+1) -y(t) ] ; % yt2 (t+2) = Ct2*A*xt_t % % Store the statevector Xsave(:, t) = xt_t; end %% Examine the estimated parameters. Q0 = [thx(:,1) thx(:,2)]; % These are the true parameters we seek. figure plot( Xsave' ) hold on plot(thx(:,1), 'Color','red','LineStyle',':') hold on plot(thx(:,2), 'Color','red','LineStyle',':') title(sprintf('Estimated parameters, with Re = %7.6f and Rw = %4.3f', Re, Rw)) xlabel('Time') ylim([-2 2]) %% Plot figure plot(Xsave(1,:)) hold on plot(Xsave(2,:)) legend('a1', 'a2', 'Location','SW') figure plot(ehat) title('residual') sumsqr(ehat)
Editor is loading...