Untitled
D=0.005; %[m] m=0.01; %[kg] cp=500; %[J/kg*K] T_p=283.15; %[K] v=1; %[m/s] sigma=5.67e-8; %[W/m^2*K^4] Pr=0.7; nu=1.81e-5; %[Pa*s] k=0.025; %[W/m*K] MW_air=0.028; %[kg/mol] T0=298.15; %[K] T_air=293.15; %[K] t_fin=3600; %[s] P=101325; %[Pa] R=8.134; %[J/mol*K] A=pi*D^2; rho_air=P*MW_air/(R*T_air); %[kg/m^3] Re=rho_air*v*D/nu; Nu=0.4*Re^0.5*Pr*(1/3); function dTdt=temperatura(t,T) D=0.005; %[m] m=0.01; %[kg] cp=500; %[J/kg*K] T_p=283.15; %[K] v=1; %[m/s] sigma=5.67e-8; %[W/m^2*K^4] Pr=0.7; nu=1.81e-5; %[Pa*s] k=0.025; %[W/m*K] MW_air=0.028; %[kg/mol] T0=298.15; %[K] T_air=293.15; %[K] t_fin=3600; %[s] P=101325; %[Pa] R=8.134; %[J/mol*K] A=pi*D^2; rho_air=P*MW_air/(R*T_air); %[kg/m^3] Re=rho_air*v*D/nu; Nu=0.4*Re^0.5*Pr*(1/3); Qrad=sigma*A*(T^4-T_p^4); Qconv=Nu*k/D*A*(T_air-T); dTdt=-Qrad/(m*cp)+Qconv/(m*cp); end tspan=[0 t_fin]; T0=298.15; %[K] [t,T]=ode45(@temperatura, tspan, T0); figure; hold on; plot(t, T, 'b-', 'LineWidth', 1.5); xlabel('Tempo (s)'); ylabel('temperatura (K)'); title('Variazione temperatura in funzione del tempo'); grid on; fprintf('Valore finali dopo 1 ora:\n'); fprintf('Temperatura finale: %.4f K\n', T(end));
Leave a Comment