Untitled
unknown
python
2 years ago
1.4 kB
4
Indexable
# dropout rate for FC layers dropout=0.5 # CNN architecture input_image = Input(shape=(img_height,img_width,img_channels)) x1 = Conv2D(64, (3, 3),padding='same', activation='relu')(input_image) x1 = Conv2D(64, (3, 3),padding='same', activation='relu')(x1) x1 = MaxPooling2D((2, 2))(x1) x2_pr = Conv2D(128, (3, 3),padding='same', activation='relu')(x1) x2 = Conv2D(128, (3, 3),padding='same', activation='relu')(x2_pr) x2 = MaxPooling2D((2, 2))(x2) x3_pr = Conv2D(256, (3, 3),padding='same', activation='relu')(x2) x3 = Conv2D(256, (3, 3),padding='same', activation='relu')(x3_pr) x3 = Conv2D(256, (1, 1),padding='same',activation='relu')(x3) x3 = MaxPooling2D((2, 2))(x3) x4_pr = Conv2D(512, (3, 3),padding='same', activation='relu')(x3) x4 = Conv2D(512, (3, 3),padding='same', activation='relu')(x4_pr) x4 = Conv2D(512, (1, 1),padding='same',activation='relu')(x4) x4 = MaxPooling2D((2, 2))(x4) x5_pr = Conv2D(512, (3, 3),padding='same', activation='relu')(x4) x5 = Conv2D(512, (3, 3),padding='same', activation='relu')(x5_pr) x5 = Conv2D(512, (1, 1),padding='same',activation='relu')(x5) x5 = MaxPooling2D((2, 2))(x5) x5 = Flatten()(x5) x=Dense(4096, activation='relu', kernel_constraint=maxnorm(3))(x5) x=Dropout(dropout)(x) x=Dense(4096, activation='relu', kernel_constraint=maxnorm(3))(x) x=Dropout(dropout)(x) out= Dense(num_classes, activation='softmax')(x) model = Model(inputs = input_image, outputs = out);
Editor is loading...
Leave a Comment