Untitled

mail@pastecode.io avatar
unknown
python
a year ago
11 kB
3
Indexable
1)Analiza in componente principale ACP

import pandas as pd
import numpy as np

#A
infoTari = pd.read_csv('./dataIN/MiseNatPopTari.csv' , index_col=0)
codExtins = pd.read_csv('./dataIN/CoduriTariExtins.csv' , index_col=0)


nume_var = infoTari.columns[2:].values
print(nume_var)
lista_nume_var = list(nume_var)
nume_obs = infoTari.index.values

print(nume_obs)

conditie = infoTari['RS'] < 0
print(infoTari[conditie])

t = infoTari.merge(right = codExtins , right_index=True , left_index=True)
t1 = t.groupby('Continent')[lista_nume_var].mean()
print(t1)

#B - ACP standardizata

# 1)Variantele componentelor principale.

data_std = (infoTari[nume_var] - infoTari[nume_var].mean() ) / infoTari[nume_var].std()
print(data_std)

from sklearn.decomposition import PCA


pca = PCA()
pca.fit(data_std)

varianta = pca.explained_variance_ratio_
print(varianta)

#Scorurile asociate instantelor.

nr_componente = len(varianta)
nr_componente2 = len(pca.components_)
print(nr_componente,nr_componente2)

et_componente = ["C"+str(i+1) for i in range(nr_componente)]
print(et_componente)

scoruri = np.dot(data_std , pca.components_.T)
t_scoruri = pd.DataFrame(data=scoruri , index=nume_obs , columns=et_componente)
print(t_scoruri)

#3 ) Graficul scorurilor in primele doua axe principale
t_componente = pd.DataFrame(data=pca.components_,index=et_componente,columns=nume_var)
print(t_componente)

from matplotlib import pyplot as plt
print(pca.components_)
plt.figure(figsize=(8,8))
plt.scatter(pca.components_[0, :], pca.components_[1, :])
plt.show()







2)Analiza canonica a corelatiei (standardizate) - ACC 



import numpy as np
import pandas as pd

t_ind = pd.read_csv('./DataIN/Industrie.csv' , index_col=0)
t_pop = pd.read_csv('./DataIN/PopulatieLocalitati.csv', index_col=0)

#print(industrie)
nume_industrii = t_ind.columns[1:].values
print(nume_industrii)
lista_nume_industrii = list(nume_industrii)

t1 = t_ind.merge(right=t_pop , right_index=True , left_index=True)
print(t1)

#cerinta 1---------------------------------
def perCapita(t):
    linie = t[lista_nume_industrii].values / t['Populatie']
    rez = list(linie)
    rez = [t['Localitate_x'] ] + rez
    #print(rez)
    return pd.Series(data=rez , index=['Localitate_x']+lista_nume_industrii)

t2 = t1[['Localitate_x','Populatie'] + lista_nume_industrii].apply(func=perCapita,
                                 axis=1 )
print(t2)

#cerinta 2---------------------------------
t3 = t1[lista_nume_industrii + ['Judet']].groupby('Judet').sum()
print(t3)

def maxCA(t):
    linie = t.values
    #print(linie)
    max_pe_linie = np.argmax(linie)
    #print(max_pe_linie , linie[max_pe_linie])
    rez = [t.index[max_pe_linie] , linie[max_pe_linie]]
    return pd.Series(data=rez , index=['Activitatea dominanta' , 'CA'])

t4 = t3[lista_nume_industrii].apply(func = maxCA,axis =1 )
print(t4)


#Analiza canonica a corelatiei (standardizate) - ACC 
#cerinta 3-standardizați valorile variabilelor in 2 subseturi

import matplotlib.pyplot as plt
import sklearn.cross_decomposition as skl

tabel = pd.read_csv('./DataIN/DataSet_34.csv' , index_col =0)
print(tabel)
obs = tabel.index.values
tabel_std = (tabel - tabel.mean()) / tabel.std()
print(tabel_std)
coloane_x = tabel.columns[0:4].values
coloane_y = tabel.columns[4:].values
Xstd = tabel_std[coloane_x]
Ystd = tabel_std[coloane_y]

#Cerinta 4 --------------------------------
n,p=np.shape(Xstd)
q=Ystd.shape[1]
m=min(p,q)
print(n,p,q,m)

obiectCCA = skl.CCA(n_components=m)
obiectCCA.fit(X=Xstd , Y=Ystd)
z,u=obiectCCA.transform(X=Xstd , Y=Ystd)
z_df = pd.DataFrame(data=z , index=obs , columns=['z'+str(j+1) for j in range(m)])
z_df.to_csv('./DataOUT/Xscores_.csv')
u_df = pd.DataFrame(data=u , index=obs , columns=['u'+str(j+1) for j in range(m)])
u_df.to_csv('./DataOUT/Yscores.csv')

#print(z,u)

#Cerinta 5----------------------------
Rxz = obiectCCA.x_loadings_
Rxz_df = pd.DataFrame(data=Rxz , index=coloane_x,
                      columns=['z'+str(j+1) for j in range(m)])
Rxz_df.to_csv('./DataOUT/Rxz.csv')

Ryu = obiectCCA.y_loadings_
Ryu_df = pd.DataFrame(data=Ryu , index=coloane_y,
                      columns=['u'+str(j+1) for j in range(m)])
Ryu_df.to_csv('./DataOUT/Ryu.csv')
#Cerinta 6----------------------------
def biplot(z,u,obs=None) :
    f = plt.figure(figsize=(11,8))
    ax = f.add_subplot(1,1,1)
    assert isinstance(ax , plt.Axes)
    ax.scatter(x=z[:,0], y=z[:,1] , color="Red" , label='Set X')
    ax.scatter(x=u[:,0] , y=u[:,1] , color="Blue" , label='Set Y')
    if obs is not None:
        for i in range (len(obs)):
            ax.text(x=z[i,0], y=z[i,1] , s=obs[i])
            ax.text(x=u[i,0] , y=u[i,1], s=obs[i])
biplot(z,u,obs=obs)
plt.show()




3)Analiza Clusteri


import pandas as pd
import numpy as np


tabel_alcool=pd.read_csv("DateIN/alcohol.csv",index_col=0)
tabel_coduri=pd.read_csv("DateIN/CoduriTariExtins.csv",index_col=0)

#cerinta 1


ani = tabel_alcool.columns[1:].values
print(ani)
lista_ani = list(ani)
lista_obs = list(tabel_alcool.index.values)

t = tabel_alcool.copy()
t['Medie']  = tabel_alcool[lista_ani].mean(axis=1)
#print(t)
c1 = t[['Medie' , 'Code']].groupby('Code').mean()
#print(c1)
c1.to_csv('cer1.csv')

t1 = pd.DataFrame(data=t[['Medie' ,'Code']] , index=lista_obs,columns=['Medie'])
#print(t1)


#2-----------------------------------

t2 = t.merge(right = tabel_coduri , right_index=True , left_index=True)
#print(t2)
t3 = t2.groupby('Continent')[lista_ani].mean()

t3['ValoareMaxima'] = t3[lista_ani].max(axis=1)
t3['AnValoareMaxima'] = t3[lista_ani].idxmax(axis=1)
#print(t3 , type(t3))

t4 = t3['AnValoareMaxima']
#print(t4)
t4.to_csv('cer2.csv')

#b-----------------------
import seaborn as sb
import matplotlib.pyplot as plt
import scipy.cluster.hierarchy as hclust
from sklearn.decomposition import PCA

#Cluster
m=len(lista_ani)
n=len(lista_obs)
x=tabel_alcool[lista_ani].values

nan_indices = np.isnan(x)
column_means = np.nanmean(x, axis=0)
x[nan_indices] = np.take(column_means, np.where(nan_indices)[1])

print(x)
#Construim ierarhie
h=hclust.linkage(x,method="ward")
print(h)
#nr jonctiuni
p=n-1
print("jonctiuni",p)
#distanta maxima intre 2 clusteri
k_diff_max=np.argmax(h[1:,2]-h[:(p-1),2])
print("distanta",k_diff_max)
#nr clusteri
nr_clusteri=p-k_diff_max
print("nr_clusteri",nr_clusteri)

plt.figure(figsize=(10,10))
hclust.dendrogram(h)
plt.show()

k_diff_max=p-nr_clusteri
prag=(h[k_diff_max,2]+h[k_diff_max+1,2])/2
n=p+1
c=np.arange(n)
for i in range(n-nr_clusteri):
    k1=h[i,0]
    k2=h[i,1]
    c[c==k1]=n+i
    c[c==k2]=n+i
coduri=pd.Categorical(c).codes
partitie_optima = np.array(["c"+str(cod)for cod in coduri])
print(partitie_optima)




4)Analiza factoriala 





import numpy as np
import pandas as pd

#cerinta 1 ------------------------
vot = pd.read_csv('./dataIN/Vot.csv',index_col=0)
print(vot)
numeCol = vot.columns[1:].values
print('\n',numeCol,type(numeCol))
listaCol = list(numeCol)

# Identificăm categoria de alegători cu cel mai mic procent de prezență la vot pentru fiecare localitate
vot['valoare_minima'] = vot[listaCol].min(axis=1)
vot['Categorie'] = vot[listaCol].idxmin(axis=1)

print(vot)
t=vot[['Localitate','Categorie']]
print(t)
#cerinta 2--------------------------
coduri= pd.read_csv('./dataIN/CoduriLocalitati.csv' , index_col=0)
t1 = vot.merge(right = coduri ,left_index=True , right_index=True )
print(t1)
t2 = t1.groupby('County')[listaCol].mean()
print(t2)

#B-----------------------------------
#1)1. Aplicarea testului Bartlett de relevanță. Se va calcula și se va afişa pragul de semnificație asociat respingerii/acceptării testului (p-value).
from factor_analyzer.factor_analyzer import calculate_bartlett_sphericity
from factor_analyzer import FactorAnalyzer
import matplotlib.pyplot as plt

#Datele utilizate sunt in df-ul vot
vot_data = vot[listaCol]
# Aplicarea testului Bartlett de relevanță
bartlett_statistic, p_value = calculate_bartlett_sphericity(vot_data)
print("Testul Bartlett de relevanță:")
print("Statistică Bartlett:", bartlett_statistic)
print("P-value:", p_value)

#2)2. Scorurile factoriale. Vor fi salvate în fișierul f.csv. (2 puncte)


# Analiza factorială
factor_analyzer = FactorAnalyzer()
factor_analyzer.fit(vot_data)

print(vot_data)
# Scorurile factoriale

factor_scores = factor_analyzer.transform(vot_data)
print('FORMA FACTOR SCRES',factor_scores.shape[1])
factor_scores_df = pd.DataFrame(data=factor_scores, columns=["Factor1", "Factor2","Factor 3"])
factor_scores_df.to_csv("./dataOUT/f.csv", index=False)

#3 ) 3. Graficul scorurilor factoriale pentru primii doi factori.

# Graficul scorurilor factoriale pentru primii doi factori
plt.figure(figsize=(8, 6))
plt.scatter(factor_scores[:, 0], factor_scores[:, 1])
plt.xlabel("Factor 1")
plt.ylabel("Factor 2")
plt.title("Scorurile factoriale pentru primii doi factori")
plt.show()




5)Analiza discriminanta 




import pandas as pd
import numpy as np

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from  sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
import seaborn as sb
import matplotlib.pyplot as plt

tabel_train_test=pd.read_csv("dataIn/hernia.csv",index_col=0)

variabile=list(tabel_train_test.columns)
predictori=variabile[:-1]
tinta=variabile[-1]

x_train,x_test,y_train,y_test=train_test_split(tabel_train_test[predictori],tabel_train_test[tinta],test_size=0.4)

#Creare model liniar
model_lda=LinearDiscriminantAnalysis()
model_lda.fit(x_train,y_train)

#Predictie model liniar
predictie_model_lda=model_lda.predict(x_train)
print(predictie_model_lda)

#Predictie in testul de aplicare
x_apply=pd.read_csv("dataIn/hernia_apply.csv",index_col=0)
predictie_test_aplicatie=model_lda.predict(x_apply[predictori])
print(predictie_test_aplicatie)

#Creare model Bayes
model_b=GaussianNB()
model_b.fit(x_train,y_train)
#Predictie model  in bayes
predictie_b_test=model_b.predict(x_apply)
print(predictie_b_test)

#Calcul axe discriminante
clase=model_lda.classes_
#nr de functii discriminante
m=len(clase)-1

#calcul scoruri model liniar
z=model_lda.transform(x_test)
df_z=pd.DataFrame(data=z,index=x_test.index,columns=["Z"+str(i+1)for i in range(m)])
df_z.to_csv("zz.csv")

#Desen distributie-->o sg axa
def plot_distributie(z,y,k=0,titlu="Distributie"):
    fig=plt.figure(titlu,figsize=(9,9))
    ax=fig.add_subplot(1,1,1)
    ax.set_title(titlu)
    ax=sb.kdeplot(x=z[:,k],hue=y,fill=True,ax=ax)

for i in range(m):
    plot_distributie(z,y_test,i,"Distributie")

#Desen scoruri in 2 axe
def plot_instante(z,y,clase,k1=0,k2=1,titlu="2Axe"):
    fig = plt.figure(titlu, figsize=(9, 9))
    ax = fig.add_subplot(1, 1, 1)
    ax.set_title(titlu)
    ax.set_xlabel("z"+str(k1+1))
    ax.set_ylabel("z"+str(k2+1))
    ax=sb.scatterplot(x=z[:,k1],y=z[:,k2],hue=y,hue_order=clase,ax=ax)

for i in range(m-1):
    for j in range(i+1,m):
        plot_instante(z,y_test,clase,i,j,"2Axe")
plt.show()






Leave a Comment