Untitled
unknown
c_cpp
a month ago
146 kB
1
Indexable
Model Input Name: unique_ids_raw_output___9:0, Shape: [0] Model Input Name: segment_ids:0, Shape: [0, 256] Model Input Name: input_mask:0, Shape: [0, 256] Model Input Name: input_ids:0, Shape: [0, 256] Starting model execution... Inputs Details: Input Name: input_ids:0 Shape: (1, 256) Data (first 10 values): [20201 26146 26630 6768 27993 13863 27651 11274 8810 27497]... -------------------------------------------------- Input Name: segment_ids:0 Shape: (1, 256) Data (first 10 values): [0 0 1 0 1 1 0 1 1 0]... -------------------------------------------------- Input Name: input_mask:0 Shape: (1, 256) Data (first 10 values): [1 1 0 1 1 1 0 1 0 1]... -------------------------------------------------- Input Name: unique_ids_raw_output___9:0 Shape: (0,) Data (first 10 values): []... -------------------------------------------------- No Add node related to MatMul output: bert/embeddings/MatMul. Executing regular MatMul. Fusing MatMul with Add for Node: bert/encoder/layer_0/attention/self/value/MatMul Skipping already processed Add Node: bert/encoder/layer_0/attention/self/value/BiasAdd Fusing MatMul with Add for Node: bert/encoder/layer_0/attention/self/query/MatMul Skipping already processed Add Node: bert/encoder/layer_0/attention/self/query/BiasAdd Fusing MatMul with Add for Node: bert/encoder/layer_0/attention/self/key/MatMul Skipping already processed Add Node: bert/encoder/layer_0/attention/self/key/BiasAdd No Add node related to MatMul output: bert/encoder/layer_0/attention/self/MatMul. Executing regular MatMul. No Add node related to MatMul output: bert/encoder/layer_0/attention/self/MatMul_1. Executing regular MatMul. Fusing MatMul with 2Add for Node: bert/encoder/layer_0/attention/output/dense/MatMul Skipping already processed Add Node: bert/encoder/layer_0/attention/output/dense/BiasAdd Skipping already processed Add Node: bert/encoder/layer_0/attention/output/add Fusing MatMul with Add for Node: bert/encoder/layer_0/intermediate/dense/MatMul Skipping already processed Add Node: bert/encoder/layer_0/intermediate/dense/BiasAdd Fusing MatMul with 2Add for Node: bert/encoder/layer_0/output/dense/MatMul Skipping already processed Add Node: bert/encoder/layer_0/output/dense/BiasAdd Skipping already processed Add Node: bert/encoder/layer_0/output/add Fusing MatMul with Add for Node: bert/encoder/layer_1/attention/self/value/MatMul Skipping already processed Add Node: bert/encoder/layer_1/attention/self/value/BiasAdd Fusing MatMul with Add for Node: bert/encoder/layer_1/attention/self/query/MatMul Skipping already processed Add Node: bert/encoder/layer_1/attention/self/query/BiasAdd Fusing MatMul with Add for Node: bert/encoder/layer_1/attention/self/key/MatMul Skipping already processed Add Node: bert/encoder/layer_1/attention/self/key/BiasAdd No Add node related to MatMul output: bert/encoder/layer_1/attention/self/MatMul. Executing regular MatMul. No Add node related to MatMul output: bert/encoder/layer_1/attention/self/MatMul_1. Executing regular MatMul. Fusing MatMul with 2Add for Node: bert/encoder/layer_1/attention/output/dense/MatMul Skipping already processed Add Node: bert/encoder/layer_1/attention/output/dense/BiasAdd Skipping already processed Add Node: bert/encoder/layer_1/attention/output/add Fusing MatMul with Add for Node: bert/encoder/layer_1/intermediate/dense/MatMul Skipping already processed Add Node: bert/encoder/layer_1/intermediate/dense/BiasAdd Fusing MatMul with 2Add for Node: bert/encoder/layer_1/output/dense/MatMul Skipping already processed Add Node: bert/encoder/layer_1/output/dense/BiasAdd Skipping already processed Add Node: bert/encoder/layer_1/output/add Fusing MatMul with Add for Node: bert/encoder/layer_2/attention/self/value/MatMul Skipping already processed Add Node: bert/encoder/layer_2/attention/self/value/BiasAdd Fusing MatMul with Add for Node: bert/encoder/layer_2/attention/self/query/MatMul Skipping already processed Add Node: bert/encoder/layer_2/attention/self/query/BiasAdd Fusing MatMul with Add for Node: bert/encoder/layer_2/attention/self/key/MatMul Skipping already processed Add Node: bert/encoder/layer_2/attention/self/key/BiasAdd No Add node related to MatMul output: bert/encoder/layer_2/attention/self/MatMul. Executing regular MatMul. No Add node related to MatMul output: bert/encoder/layer_2/attention/self/MatMul_1. Executing regular MatMul. Fusing MatMul with 2Add for Node: bert/encoder/layer_2/attention/output/dense/MatMul Skipping already processed Add Node: bert/encoder/layer_2/attention/output/dense/BiasAdd Skipping already processed Add Node: bert/encoder/layer_2/attention/output/add Fusing MatMul with Add for Node: bert/encoder/layer_2/intermediate/dense/MatMul Skipping already processed Add Node: bert/encoder/layer_2/intermediate/dense/BiasAdd Fusing MatMul with 2Add for Node: bert/encoder/layer_2/output/dense/MatMul Skipping already processed Add Node: bert/encoder/layer_2/output/dense/BiasAdd Skipping already processed Add Node: bert/encoder/layer_2/output/add Fusing MatMul with Add for Node: bert/encoder/layer_3/attention/self/value/MatMul Skipping already processed Add Node: bert/encoder/layer_3/attention/self/value/BiasAdd Fusing MatMul with Add for Node: bert/encoder/layer_3/attention/self/query/MatMul Skipping already processed Add Node: bert/encoder/layer_3/attention/self/query/BiasAdd Fusing MatMul with Add for Node: bert/encoder/layer_3/attention/self/key/MatMul Skipping already processed Add Node: bert/encoder/layer_3/attention/self/key/BiasAdd No Add node related to MatMul output: bert/encoder/layer_3/attention/self/MatMul. Executing regular MatMul. No Add node related to MatMul output: bert/encoder/layer_3/attention/self/MatMul_1. Executing regular MatMul. Fusing MatMul with 2Add for Node: bert/encoder/layer_3/attention/output/dense/MatMul Skipping already processed Add Node: bert/encoder/layer_3/attention/output/dense/BiasAdd Skipping already processed Add Node: bert/encoder/layer_3/attention/output/add Fusing MatMul with Add for Node: bert/encoder/layer_3/intermediate/dense/MatMul Skipping already processed Add Node: bert/encoder/layer_3/intermediate/dense/BiasAdd Fusing MatMul with 2Add for Node: bert/encoder/layer_3/output/dense/MatMul Skipping already processed Add Node: bert/encoder/layer_3/output/dense/BiasAdd Skipping already processed Add Node: bert/encoder/layer_3/output/add Fusing MatMul with Add for Node: bert/encoder/layer_4/attention/self/value/MatMul Skipping already processed Add Node: bert/encoder/layer_4/attention/self/value/BiasAdd Fusing MatMul with Add for Node: bert/encoder/layer_4/attention/self/query/MatMul Skipping already processed Add Node: bert/encoder/layer_4/attention/self/query/BiasAdd Fusing MatMul with Add for Node: bert/encoder/layer_4/attention/self/key/MatMul Skipping already processed Add Node: bert/encoder/layer_4/attention/self/key/BiasAdd No Add node related to MatMul output: bert/encoder/layer_4/attention/self/MatMul. Executing regular MatMul. No Add node related to MatMul output: bert/encoder/layer_4/attention/self/MatMul_1. Executing regular MatMul. Fusing MatMul with 2Add for Node: bert/encoder/layer_4/attention/output/dense/MatMul Skipping already processed Add Node: bert/encoder/layer_4/attention/output/dense/BiasAdd Skipping already processed Add Node: bert/encoder/layer_4/attention/output/add Fusing MatMul with Add for Node: bert/encoder/layer_4/intermediate/dense/MatMul Skipping already processed Add Node: bert/encoder/layer_4/intermediate/dense/BiasAdd Fusing MatMul with 2Add for Node: bert/encoder/layer_4/output/dense/MatMul Skipping already processed Add Node: bert/encoder/layer_4/output/dense/BiasAdd Skipping already processed Add Node: bert/encoder/layer_4/output/add Fusing MatMul with Add for Node: bert/encoder/layer_5/attention/self/value/MatMul Skipping already processed Add Node: bert/encoder/layer_5/attention/self/value/BiasAdd Fusing MatMul with Add for Node: bert/encoder/layer_5/attention/self/query/MatMul Skipping already processed Add Node: bert/encoder/layer_5/attention/self/query/BiasAdd Fusing MatMul with Add for Node: bert/encoder/layer_5/attention/self/key/MatMul Skipping already processed Add Node: bert/encoder/layer_5/attention/self/key/BiasAdd No Add node related to MatMul output: bert/encoder/layer_5/attention/self/MatMul. Executing regular MatMul. No Add node related to MatMul output: bert/encoder/layer_5/attention/self/MatMul_1. Executing regular MatMul. Fusing MatMul with 2Add for Node: bert/encoder/layer_5/attention/output/dense/MatMul Skipping already processed Add Node: bert/encoder/layer_5/attention/output/dense/BiasAdd Skipping already processed Add Node: bert/encoder/layer_5/attention/output/add Fusing MatMul with Add for Node: bert/encoder/layer_5/intermediate/dense/MatMul Skipping already processed Add Node: bert/encoder/layer_5/intermediate/dense/BiasAdd Fusing MatMul with 2Add for Node: bert/encoder/layer_5/output/dense/MatMul Skipping already processed Add Node: bert/encoder/layer_5/output/dense/BiasAdd Skipping already processed Add Node: bert/encoder/layer_5/output/add Fusing MatMul with Add for Node: bert/encoder/layer_6/attention/self/value/MatMul Skipping already processed Add Node: bert/encoder/layer_6/attention/self/value/BiasAdd Fusing MatMul with Add for Node: bert/encoder/layer_6/attention/self/query/MatMul Skipping already processed Add Node: bert/encoder/layer_6/attention/self/query/BiasAdd Fusing MatMul with Add for Node: bert/encoder/layer_6/attention/self/key/MatMul Skipping already processed Add Node: bert/encoder/layer_6/attention/self/key/BiasAdd No Add node related to MatMul output: bert/encoder/layer_6/attention/self/MatMul. Executing regular MatMul. No Add node related to MatMul output: bert/encoder/layer_6/attention/self/MatMul_1. Executing regular MatMul. Fusing MatMul with 2Add for Node: bert/encoder/layer_6/attention/output/dense/MatMul Skipping already processed Add Node: bert/encoder/layer_6/attention/output/dense/BiasAdd Skipping already processed Add Node: bert/encoder/layer_6/attention/output/add Fusing MatMul with Add for Node: bert/encoder/layer_6/intermediate/dense/MatMul Skipping already processed Add Node: bert/encoder/layer_6/intermediate/dense/BiasAdd Fusing MatMul with 2Add for Node: bert/encoder/layer_6/output/dense/MatMul Skipping already processed Add Node: bert/encoder/layer_6/output/dense/BiasAdd Skipping already processed Add Node: bert/encoder/layer_6/output/add Fusing MatMul with Add for Node: bert/encoder/layer_7/attention/self/value/MatMul Skipping already processed Add Node: bert/encoder/layer_7/attention/self/value/BiasAdd Fusing MatMul with Add for Node: bert/encoder/layer_7/attention/self/query/MatMul Skipping already processed Add Node: bert/encoder/layer_7/attention/self/query/BiasAdd Fusing MatMul with Add for Node: bert/encoder/layer_7/attention/self/key/MatMul Skipping already processed Add Node: bert/encoder/layer_7/attention/self/key/BiasAdd No Add node related to MatMul output: bert/encoder/layer_7/attention/self/MatMul. Executing regular MatMul. No Add node related to MatMul output: bert/encoder/layer_7/attention/self/MatMul_1. Executing regular MatMul. Fusing MatMul with 2Add for Node: bert/encoder/layer_7/attention/output/dense/MatMul Skipping already processed Add Node: bert/encoder/layer_7/attention/output/dense/BiasAdd Skipping already processed Add Node: bert/encoder/layer_7/attention/output/add Fusing MatMul with Add for Node: bert/encoder/layer_7/intermediate/dense/MatMul Skipping already processed Add Node: bert/encoder/layer_7/intermediate/dense/BiasAdd Fusing MatMul with 2Add for Node: bert/encoder/layer_7/output/dense/MatMul Skipping already processed Add Node: bert/encoder/layer_7/output/dense/BiasAdd Skipping already processed Add Node: bert/encoder/layer_7/output/add Fusing MatMul with Add for Node: bert/encoder/layer_8/attention/self/value/MatMul Skipping already processed Add Node: bert/encoder/layer_8/attention/self/value/BiasAdd Fusing MatMul with Add for Node: bert/encoder/layer_8/attention/self/query/MatMul Skipping already processed Add Node: bert/encoder/layer_8/attention/self/query/BiasAdd Fusing MatMul with Add for Node: bert/encoder/layer_8/attention/self/key/MatMul Skipping already processed Add Node: bert/encoder/layer_8/attention/self/key/BiasAdd No Add node related to MatMul output: bert/encoder/layer_8/attention/self/MatMul. Executing regular MatMul. No Add node related to MatMul output: bert/encoder/layer_8/attention/self/MatMul_1. Executing regular MatMul. Fusing MatMul with 2Add for Node: bert/encoder/layer_8/attention/output/dense/MatMul Skipping already processed Add Node: bert/encoder/layer_8/attention/output/dense/BiasAdd Skipping already processed Add Node: bert/encoder/layer_8/attention/output/add Fusing MatMul with Add for Node: bert/encoder/layer_8/intermediate/dense/MatMul Skipping already processed Add Node: bert/encoder/layer_8/intermediate/dense/BiasAdd Fusing MatMul with 2Add for Node: bert/encoder/layer_8/output/dense/MatMul Skipping already processed Add Node: bert/encoder/layer_8/output/dense/BiasAdd Skipping already processed Add Node: bert/encoder/layer_8/output/add Fusing MatMul with Add for Node: bert/encoder/layer_9/attention/self/value/MatMul Skipping already processed Add Node: bert/encoder/layer_9/attention/self/value/BiasAdd Fusing MatMul with Add for Node: bert/encoder/layer_9/attention/self/query/MatMul Skipping already processed Add Node: bert/encoder/layer_9/attention/self/query/BiasAdd Fusing MatMul with Add for Node: bert/encoder/layer_9/attention/self/key/MatMul Skipping already processed Add Node: bert/encoder/layer_9/attention/self/key/BiasAdd No Add node related to MatMul output: bert/encoder/layer_9/attention/self/MatMul. Executing regular MatMul. No Add node related to MatMul output: bert/encoder/layer_9/attention/self/MatMul_1. Executing regular MatMul. Fusing MatMul with 2Add for Node: bert/encoder/layer_9/attention/output/dense/MatMul Skipping already processed Add Node: bert/encoder/layer_9/attention/output/dense/BiasAdd Skipping already processed Add Node: bert/encoder/layer_9/attention/output/add Fusing MatMul with Add for Node: bert/encoder/layer_9/intermediate/dense/MatMul Skipping already processed Add Node: bert/encoder/layer_9/intermediate/dense/BiasAdd Fusing MatMul with 2Add for Node: bert/encoder/layer_9/output/dense/MatMul Skipping already processed Add Node: bert/encoder/layer_9/output/dense/BiasAdd Skipping already processed Add Node: bert/encoder/layer_9/output/add Fusing MatMul with Add for Node: bert/encoder/layer_10/attention/self/value/MatMul Skipping already processed Add Node: bert/encoder/layer_10/attention/self/value/BiasAdd Fusing MatMul with Add for Node: bert/encoder/layer_10/attention/self/query/MatMul Skipping already processed Add Node: bert/encoder/layer_10/attention/self/query/BiasAdd Fusing MatMul with Add for Node: bert/encoder/layer_10/attention/self/key/MatMul Skipping already processed Add Node: bert/encoder/layer_10/attention/self/key/BiasAdd No Add node related to MatMul output: bert/encoder/layer_10/attention/self/MatMul. Executing regular MatMul. No Add node related to MatMul output: bert/encoder/layer_10/attention/self/MatMul_1. Executing regular MatMul. Fusing MatMul with 2Add for Node: bert/encoder/layer_10/attention/output/dense/MatMul Skipping already processed Add Node: bert/encoder/layer_10/attention/output/dense/BiasAdd Skipping already processed Add Node: bert/encoder/layer_10/attention/output/add Fusing MatMul with Add for Node: bert/encoder/layer_10/intermediate/dense/MatMul Skipping already processed Add Node: bert/encoder/layer_10/intermediate/dense/BiasAdd Fusing MatMul with 2Add for Node: bert/encoder/layer_10/output/dense/MatMul Skipping already processed Add Node: bert/encoder/layer_10/output/dense/BiasAdd Skipping already processed Add Node: bert/encoder/layer_10/output/add Fusing MatMul with Add for Node: bert/encoder/layer_11/attention/self/value/MatMul Skipping already processed Add Node: bert/encoder/layer_11/attention/self/value/BiasAdd Fusing MatMul with Add for Node: bert/encoder/layer_11/attention/self/query/MatMul Skipping already processed Add Node: bert/encoder/layer_11/attention/self/query/BiasAdd Fusing MatMul with Add for Node: bert/encoder/layer_11/attention/self/key/MatMul Skipping already processed Add Node: bert/encoder/layer_11/attention/self/key/BiasAdd No Add node related to MatMul output: bert/encoder/layer_11/attention/self/MatMul. Executing regular MatMul. No Add node related to MatMul output: bert/encoder/layer_11/attention/self/MatMul_1. Executing regular MatMul. Fusing MatMul with 2Add for Node: bert/encoder/layer_11/attention/output/dense/MatMul Skipping already processed Add Node: bert/encoder/layer_11/attention/output/dense/BiasAdd Skipping already processed Add Node: bert/encoder/layer_11/attention/output/add Fusing MatMul with Add for Node: bert/encoder/layer_11/intermediate/dense/MatMul Skipping already processed Add Node: bert/encoder/layer_11/intermediate/dense/BiasAdd Fusing MatMul with 2Add for Node: bert/encoder/layer_11/output/dense/MatMul Skipping already processed Add Node: bert/encoder/layer_11/output/dense/BiasAdd Skipping already processed Add Node: bert/encoder/layer_11/output/add Fusing MatMul with Add for Node: MatMul Skipping already processed Add Node: BiasAdd Node Execution Times: Node: unique_ids_graph_outputs_Identity__10, Execution Time: 0.000004 seconds Node: bert/encoder/Shape, Execution Time: 0.000004 seconds Node: bert/encoder/Shape__12, Execution Time: 0.000009 seconds Node: bert/encoder/strided_slice, Execution Time: 0.000068 seconds Node: bert/encoder/strided_slice__16, Execution Time: 0.000005 seconds Node: bert/encoder/strided_slice__17, Execution Time: 0.000004 seconds Node: bert/encoder/ones/packed_Unsqueeze__18, Execution Time: 0.000015 seconds Node: bert/encoder/ones/packed_Concat__21, Execution Time: 0.000011 seconds Node: bert/encoder/ones__22, Execution Time: 0.000004 seconds Node: bert/encoder/ones, Execution Time: 0.000010 seconds Node: bert/encoder/Reshape, Execution Time: 0.000006 seconds Node: bert/encoder/Cast, Execution Time: 0.000004 seconds Node: bert/encoder/mul, Execution Time: 0.029473 seconds Node: bert/encoder/layer_9/attention/self/ExpandDims, Execution Time: 0.000034 seconds Node: bert/encoder/layer_9/attention/self/sub, Execution Time: 0.006731 seconds Node: bert/encoder/layer_9/attention/self/mul_1, Execution Time: 0.000359 seconds Node: bert/embeddings/Reshape_2, Execution Time: 0.000050 seconds Node: bert/embeddings/Reshape, Execution Time: 0.000007 seconds Node: bert/embeddings/GatherV2, Execution Time: 0.000377 seconds Node: bert/embeddings/Reshape_1, Execution Time: 0.000007 seconds Node: bert/embeddings/one_hot, Execution Time: 0.000068 seconds Node: bert/embeddings/MatMul, Execution Time: 0.060497 seconds Node: bert/embeddings/Reshape_3, Execution Time: 0.000037 seconds Node: bert/embeddings/add, Execution Time: 0.002181 seconds Node: bert/embeddings/add_1, Execution Time: 0.001040 seconds Node: bert/embeddings/LayerNorm/moments/mean, Execution Time: 0.005559 seconds Node: bert/embeddings/LayerNorm/moments/SquaredDifference, Execution Time: 0.000734 seconds Node: bert/embeddings/LayerNorm/moments/SquaredDifference__72, Execution Time: 0.000928 seconds Node: bert/embeddings/LayerNorm/moments/variance, Execution Time: 0.000274 seconds Node: bert/embeddings/LayerNorm/batchnorm/add, Execution Time: 0.000090 seconds Node: bert/embeddings/LayerNorm/batchnorm/Rsqrt, Execution Time: 0.010432 seconds Node: bert/embeddings/LayerNorm/batchnorm/Rsqrt__74, Execution Time: 0.005194 seconds Node: bert/embeddings/LayerNorm/batchnorm/mul, Execution Time: 0.000105 seconds Node: bert/embeddings/LayerNorm/batchnorm/mul_2, Execution Time: 0.000120 seconds Node: bert/embeddings/LayerNorm/batchnorm/sub, Execution Time: 0.000089 seconds Node: bert/embeddings/LayerNorm/batchnorm/mul_1, Execution Time: 0.000674 seconds Node: bert/embeddings/LayerNorm/batchnorm/add_1, Execution Time: 0.000725 seconds Node: bert/encoder/Reshape_1, Execution Time: 0.000037 seconds Matmul Fuse Node: bert/encoder/layer_0/attention/self/value/MatMul, Execution Time: 0.031023 seconds Node: bert/encoder/layer_0/attention/self/Reshape_2, Execution Time: 0.000024 seconds Node: bert/encoder/layer_0/attention/self/transpose_2, Execution Time: 0.000432 seconds Matmul Fuse Node: bert/encoder/layer_0/attention/self/query/MatMul, Execution Time: 0.002901 seconds Node: bert/encoder/layer_0/attention/self/Reshape, Execution Time: 0.000016 seconds Node: bert/encoder/layer_0/attention/self/transpose, Execution Time: 0.000254 seconds Matmul Fuse Node: bert/encoder/layer_0/attention/self/key/MatMul, Execution Time: 0.002810 seconds Node: bert/encoder/layer_0/attention/self/Reshape_1, Execution Time: 0.000016 seconds Node: bert/encoder/layer_0/attention/self/MatMul__306, Execution Time: 0.000322 seconds Node: bert/encoder/layer_0/attention/self/MatMul, Execution Time: 0.005185 seconds Node: bert/encoder/layer_0/attention/self/Mul, Execution Time: 0.001247 seconds Node: bert/encoder/layer_0/attention/self/add, Execution Time: 0.001908 seconds Node: bert/encoder/layer_0/attention/self/Softmax, Execution Time: 0.013543 seconds Node: bert/encoder/layer_0/attention/self/MatMul_1, Execution Time: 0.001892 seconds Node: bert/encoder/layer_0/attention/self/transpose_3, Execution Time: 0.000263 seconds Node: bert/encoder/layer_0/attention/self/Reshape_3, Execution Time: 0.000043 seconds Matmul Fuse Node: bert/encoder/layer_0/attention/output/dense/MatMul, Execution Time: 0.001390 seconds Node: bert/encoder/layer_0/attention/output/LayerNorm/moments/mean, Execution Time: 0.000208 seconds Node: bert/encoder/layer_0/attention/output/LayerNorm/moments/SquaredDifference, Execution Time: 0.000246 seconds Node: bert/encoder/layer_0/attention/output/LayerNorm/moments/SquaredDifference__309, Execution Time: 0.000502 seconds Node: bert/encoder/layer_0/attention/output/LayerNorm/moments/variance, Execution Time: 0.000160 seconds Node: bert/encoder/layer_0/attention/output/LayerNorm/batchnorm/add, Execution Time: 0.000123 seconds Node: bert/encoder/layer_0/attention/output/LayerNorm/batchnorm/Rsqrt, Execution Time: 0.000085 seconds Node: bert/encoder/layer_0/attention/output/LayerNorm/batchnorm/Rsqrt__311, Execution Time: 0.000123 seconds Node: bert/encoder/layer_0/attention/output/LayerNorm/batchnorm/mul, Execution Time: 0.000113 seconds Node: bert/encoder/layer_0/attention/output/LayerNorm/batchnorm/mul_2, Execution Time: 0.000104 seconds Node: bert/encoder/layer_0/attention/output/LayerNorm/batchnorm/sub, Execution Time: 0.000084 seconds Node: bert/encoder/layer_0/attention/output/LayerNorm/batchnorm/mul_1, Execution Time: 0.000557 seconds Node: bert/encoder/layer_0/attention/output/LayerNorm/batchnorm/add_1, Execution Time: 0.000683 seconds Matmul Fuse Node: bert/encoder/layer_0/intermediate/dense/MatMul, Execution Time: 0.005011 seconds Node: bert/encoder/layer_0/intermediate/dense/Pow, Execution Time: 0.017370 seconds Node: bert/encoder/layer_0/intermediate/dense/mul, Execution Time: 0.001233 seconds Node: bert/encoder/layer_0/intermediate/dense/add, Execution Time: 0.001573 seconds Node: bert/encoder/layer_0/intermediate/dense/mul_1, Execution Time: 0.001162 seconds Node: bert/encoder/layer_0/intermediate/dense/Tanh, Execution Time: 0.003605 seconds Node: bert/encoder/layer_0/intermediate/dense/add_1, Execution Time: 0.001278 seconds Node: bert/encoder/layer_0/intermediate/dense/mul_2, Execution Time: 0.001427 seconds Node: bert/encoder/layer_0/intermediate/dense/mul_3, Execution Time: 0.001574 seconds Matmul Fuse Node: bert/encoder/layer_0/output/dense/MatMul, Execution Time: 0.002862 seconds Node: bert/encoder/layer_0/output/LayerNorm/moments/mean, Execution Time: 0.000178 seconds Node: bert/encoder/layer_0/output/LayerNorm/moments/SquaredDifference, Execution Time: 0.000243 seconds Node: bert/encoder/layer_0/output/LayerNorm/moments/SquaredDifference__313, Execution Time: 0.000337 seconds Node: bert/encoder/layer_0/output/LayerNorm/moments/variance, Execution Time: 0.000158 seconds Node: bert/encoder/layer_0/output/LayerNorm/batchnorm/add, Execution Time: 0.000083 seconds Node: bert/encoder/layer_0/output/LayerNorm/batchnorm/Rsqrt, Execution Time: 0.000059 seconds Node: bert/encoder/layer_0/output/LayerNorm/batchnorm/Rsqrt__315, Execution Time: 0.000074 seconds Node: bert/encoder/layer_0/output/LayerNorm/batchnorm/mul, Execution Time: 0.000079 seconds Node: bert/encoder/layer_0/output/LayerNorm/batchnorm/mul_2, Execution Time: 0.000091 seconds Node: bert/encoder/layer_0/output/LayerNorm/batchnorm/sub, Execution Time: 0.000081 seconds Node: bert/encoder/layer_0/output/LayerNorm/batchnorm/mul_1, Execution Time: 0.000343 seconds Node: bert/encoder/layer_0/output/LayerNorm/batchnorm/add_1, Execution Time: 0.000426 seconds Matmul Fuse Node: bert/encoder/layer_1/attention/self/value/MatMul, Execution Time: 0.002846 seconds Node: bert/encoder/layer_1/attention/self/Reshape_2, Execution Time: 0.000021 seconds Node: bert/encoder/layer_1/attention/self/transpose_2, Execution Time: 0.000252 seconds Matmul Fuse Node: bert/encoder/layer_1/attention/self/query/MatMul, Execution Time: 0.002622 seconds Node: bert/encoder/layer_1/attention/self/Reshape, Execution Time: 0.000013 seconds Node: bert/encoder/layer_1/attention/self/transpose, Execution Time: 0.000248 seconds Matmul Fuse Node: bert/encoder/layer_1/attention/self/key/MatMul, Execution Time: 0.002566 seconds Node: bert/encoder/layer_1/attention/self/Reshape_1, Execution Time: 0.000012 seconds Node: bert/encoder/layer_1/attention/self/MatMul__320, Execution Time: 0.000247 seconds Node: bert/encoder/layer_1/attention/self/MatMul, Execution Time: 0.001395 seconds Node: bert/encoder/layer_1/attention/self/Mul, Execution Time: 0.001206 seconds Node: bert/encoder/layer_1/attention/self/add, Execution Time: 0.001890 seconds Node: bert/encoder/layer_1/attention/self/Softmax, Execution Time: 0.002451 seconds Node: bert/encoder/layer_1/attention/self/MatMul_1, Execution Time: 0.001359 seconds Node: bert/encoder/layer_1/attention/self/transpose_3, Execution Time: 0.000303 seconds Node: bert/encoder/layer_1/attention/self/Reshape_3, Execution Time: 0.000055 seconds Matmul Fuse Node: bert/encoder/layer_1/attention/output/dense/MatMul, Execution Time: 0.001400 seconds Node: bert/encoder/layer_1/attention/output/LayerNorm/moments/mean, Execution Time: 0.000198 seconds Node: bert/encoder/layer_1/attention/output/LayerNorm/moments/SquaredDifference, Execution Time: 0.000259 seconds Node: bert/encoder/layer_1/attention/output/LayerNorm/moments/SquaredDifference__323, Execution Time: 0.000511 seconds Node: bert/encoder/layer_1/attention/output/LayerNorm/moments/variance, Execution Time: 0.000170 seconds Node: bert/encoder/layer_1/attention/output/LayerNorm/batchnorm/add, Execution Time: 0.000080 seconds Node: bert/encoder/layer_1/attention/output/LayerNorm/batchnorm/Rsqrt, Execution Time: 0.000062 seconds Node: bert/encoder/layer_1/attention/output/LayerNorm/batchnorm/Rsqrt__325, Execution Time: 0.000091 seconds Node: bert/encoder/layer_1/attention/output/LayerNorm/batchnorm/mul, Execution Time: 0.000089 seconds Node: bert/encoder/layer_1/attention/output/LayerNorm/batchnorm/mul_2, Execution Time: 0.000084 seconds Node: bert/encoder/layer_1/attention/output/LayerNorm/batchnorm/sub, Execution Time: 0.000093 seconds Node: bert/encoder/layer_1/attention/output/LayerNorm/batchnorm/mul_1, Execution Time: 0.000684 seconds Node: bert/encoder/layer_1/attention/output/LayerNorm/batchnorm/add_1, Execution Time: 0.000756 seconds Matmul Fuse Node: bert/encoder/layer_1/intermediate/dense/MatMul, Execution Time: 0.004641 seconds Node: bert/encoder/layer_1/intermediate/dense/Pow, Execution Time: 0.000746 seconds Node: bert/encoder/layer_1/intermediate/dense/mul, Execution Time: 0.001337 seconds Node: bert/encoder/layer_1/intermediate/dense/add, Execution Time: 0.001703 seconds Node: bert/encoder/layer_1/intermediate/dense/mul_1, Execution Time: 0.001359 seconds Node: bert/encoder/layer_1/intermediate/dense/Tanh, Execution Time: 0.001474 seconds Node: bert/encoder/layer_1/intermediate/dense/add_1, Execution Time: 0.001539 seconds Node: bert/encoder/layer_1/intermediate/dense/mul_2, Execution Time: 0.001379 seconds Node: bert/encoder/layer_1/intermediate/dense/mul_3, Execution Time: 0.001708 seconds Matmul Fuse Node: bert/encoder/layer_1/output/dense/MatMul, Execution Time: 0.002904 seconds Node: bert/encoder/layer_1/output/LayerNorm/moments/mean, Execution Time: 0.000198 seconds Node: bert/encoder/layer_1/output/LayerNorm/moments/SquaredDifference, Execution Time: 0.000254 seconds Node: bert/encoder/layer_1/output/LayerNorm/moments/SquaredDifference__327, Execution Time: 0.000345 seconds Node: bert/encoder/layer_1/output/LayerNorm/moments/variance, Execution Time: 0.000169 seconds Node: bert/encoder/layer_1/output/LayerNorm/batchnorm/add, Execution Time: 0.000090 seconds Node: bert/encoder/layer_1/output/LayerNorm/batchnorm/Rsqrt, Execution Time: 0.000065 seconds Node: bert/encoder/layer_1/output/LayerNorm/batchnorm/Rsqrt__329, Execution Time: 0.000087 seconds Node: bert/encoder/layer_1/output/LayerNorm/batchnorm/mul, Execution Time: 0.000095 seconds Node: bert/encoder/layer_1/output/LayerNorm/batchnorm/mul_2, Execution Time: 0.000084 seconds Node: bert/encoder/layer_1/output/LayerNorm/batchnorm/sub, Execution Time: 0.000091 seconds Node: bert/encoder/layer_1/output/LayerNorm/batchnorm/mul_1, Execution Time: 0.000346 seconds Node: bert/encoder/layer_1/output/LayerNorm/batchnorm/add_1, Execution Time: 0.000455 seconds Matmul Fuse Node: bert/encoder/layer_2/attention/self/value/MatMul, Execution Time: 0.003318 seconds Node: bert/encoder/layer_2/attention/self/Reshape_2, Execution Time: 0.000024 seconds Node: bert/encoder/layer_2/attention/self/transpose_2, Execution Time: 0.000264 seconds Matmul Fuse Node: bert/encoder/layer_2/attention/self/query/MatMul, Execution Time: 0.002859 seconds Node: bert/encoder/layer_2/attention/self/Reshape, Execution Time: 0.000014 seconds Node: bert/encoder/layer_2/attention/self/transpose, Execution Time: 0.000252 seconds Matmul Fuse Node: bert/encoder/layer_2/attention/self/key/MatMul, Execution Time: 0.002846 seconds Node: bert/encoder/layer_2/attention/self/Reshape_1, Execution Time: 0.000014 seconds Node: bert/encoder/layer_2/attention/self/MatMul__334, Execution Time: 0.000257 seconds Node: bert/encoder/layer_2/attention/self/MatMul, Execution Time: 0.001547 seconds Node: bert/encoder/layer_2/attention/self/Mul, Execution Time: 0.001303 seconds Node: bert/encoder/layer_2/attention/self/add, Execution Time: 0.002226 seconds Node: bert/encoder/layer_2/attention/self/Softmax, Execution Time: 0.002406 seconds Node: bert/encoder/layer_2/attention/self/MatMul_1, Execution Time: 0.001246 seconds Node: bert/encoder/layer_2/attention/self/transpose_3, Execution Time: 0.000253 seconds Node: bert/encoder/layer_2/attention/self/Reshape_3, Execution Time: 0.000060 seconds Matmul Fuse Node: bert/encoder/layer_2/attention/output/dense/MatMul, Execution Time: 0.001356 seconds Node: bert/encoder/layer_2/attention/output/LayerNorm/moments/mean, Execution Time: 0.000186 seconds Node: bert/encoder/layer_2/attention/output/LayerNorm/moments/SquaredDifference, Execution Time: 0.000257 seconds Node: bert/encoder/layer_2/attention/output/LayerNorm/moments/SquaredDifference__337, Execution Time: 0.000349 seconds Node: bert/encoder/layer_2/attention/output/LayerNorm/moments/variance, Execution Time: 0.000164 seconds Node: bert/encoder/layer_2/attention/output/LayerNorm/batchnorm/add, Execution Time: 0.000090 seconds Node: bert/encoder/layer_2/attention/output/LayerNorm/batchnorm/Rsqrt, Execution Time: 0.000065 seconds Node: bert/encoder/layer_2/attention/output/LayerNorm/batchnorm/Rsqrt__339, Execution Time: 0.000091 seconds Node: bert/encoder/layer_2/attention/output/LayerNorm/batchnorm/mul, Execution Time: 0.000092 seconds Node: bert/encoder/layer_2/attention/output/LayerNorm/batchnorm/mul_2, Execution Time: 0.000088 seconds Node: bert/encoder/layer_2/attention/output/LayerNorm/batchnorm/sub, Execution Time: 0.000089 seconds Node: bert/encoder/layer_2/attention/output/LayerNorm/batchnorm/mul_1, Execution Time: 0.000334 seconds Node: bert/encoder/layer_2/attention/output/LayerNorm/batchnorm/add_1, Execution Time: 0.000934 seconds Matmul Fuse Node: bert/encoder/layer_2/intermediate/dense/MatMul, Execution Time: 0.004746 seconds Node: bert/encoder/layer_2/intermediate/dense/Pow, Execution Time: 0.000761 seconds Node: bert/encoder/layer_2/intermediate/dense/mul, Execution Time: 0.001376 seconds Node: bert/encoder/layer_2/intermediate/dense/add, Execution Time: 0.001893 seconds Node: bert/encoder/layer_2/intermediate/dense/mul_1, Execution Time: 0.001427 seconds Node: bert/encoder/layer_2/intermediate/dense/Tanh, Execution Time: 0.001340 seconds Node: bert/encoder/layer_2/intermediate/dense/add_1, Execution Time: 0.001351 seconds Node: bert/encoder/layer_2/intermediate/dense/mul_2, Execution Time: 0.001364 seconds Node: bert/encoder/layer_2/intermediate/dense/mul_3, Execution Time: 0.001718 seconds Matmul Fuse Node: bert/encoder/layer_2/output/dense/MatMul, Execution Time: 0.002814 seconds Node: bert/encoder/layer_2/output/LayerNorm/moments/mean, Execution Time: 0.000201 seconds Node: bert/encoder/layer_2/output/LayerNorm/moments/SquaredDifference, Execution Time: 0.000253 seconds Node: bert/encoder/layer_2/output/LayerNorm/moments/SquaredDifference__341, Execution Time: 0.000345 seconds Node: bert/encoder/layer_2/output/LayerNorm/moments/variance, Execution Time: 0.000173 seconds Node: bert/encoder/layer_2/output/LayerNorm/batchnorm/add, Execution Time: 0.000090 seconds Node: bert/encoder/layer_2/output/LayerNorm/batchnorm/Rsqrt, Execution Time: 0.000066 seconds Node: bert/encoder/layer_2/output/LayerNorm/batchnorm/Rsqrt__343, Execution Time: 0.000087 seconds Node: bert/encoder/layer_2/output/LayerNorm/batchnorm/mul, Execution Time: 0.000088 seconds Node: bert/encoder/layer_2/output/LayerNorm/batchnorm/mul_2, Execution Time: 0.000084 seconds Node: bert/encoder/layer_2/output/LayerNorm/batchnorm/sub, Execution Time: 0.000091 seconds Node: bert/encoder/layer_2/output/LayerNorm/batchnorm/mul_1, Execution Time: 0.000329 seconds Node: bert/encoder/layer_2/output/LayerNorm/batchnorm/add_1, Execution Time: 0.000446 seconds Matmul Fuse Node: bert/encoder/layer_3/attention/self/value/MatMul, Execution Time: 0.003196 seconds Node: bert/encoder/layer_3/attention/self/Reshape_2, Execution Time: 0.000024 seconds Node: bert/encoder/layer_3/attention/self/transpose_2, Execution Time: 0.000274 seconds Matmul Fuse Node: bert/encoder/layer_3/attention/self/query/MatMul, Execution Time: 0.002961 seconds Node: bert/encoder/layer_3/attention/self/Reshape, Execution Time: 0.000016 seconds Node: bert/encoder/layer_3/attention/self/transpose, Execution Time: 0.000265 seconds Matmul Fuse Node: bert/encoder/layer_3/attention/self/key/MatMul, Execution Time: 0.002869 seconds Node: bert/encoder/layer_3/attention/self/Reshape_1, Execution Time: 0.000014 seconds Node: bert/encoder/layer_3/attention/self/MatMul__348, Execution Time: 0.000258 seconds Node: bert/encoder/layer_3/attention/self/MatMul, Execution Time: 0.001526 seconds Node: bert/encoder/layer_3/attention/self/Mul, Execution Time: 0.001327 seconds Node: bert/encoder/layer_3/attention/self/add, Execution Time: 0.002196 seconds Node: bert/encoder/layer_3/attention/self/Softmax, Execution Time: 0.002330 seconds Node: bert/encoder/layer_3/attention/self/MatMul_1, Execution Time: 0.001241 seconds Node: bert/encoder/layer_3/attention/self/transpose_3, Execution Time: 0.000261 seconds Node: bert/encoder/layer_3/attention/self/Reshape_3, Execution Time: 0.000058 seconds Matmul Fuse Node: bert/encoder/layer_3/attention/output/dense/MatMul, Execution Time: 0.001283 seconds Node: bert/encoder/layer_3/attention/output/LayerNorm/moments/mean, Execution Time: 0.000198 seconds Node: bert/encoder/layer_3/attention/output/LayerNorm/moments/SquaredDifference, Execution Time: 0.000278 seconds Node: bert/encoder/layer_3/attention/output/LayerNorm/moments/SquaredDifference__351, Execution Time: 0.000351 seconds Node: bert/encoder/layer_3/attention/output/LayerNorm/moments/variance, Execution Time: 0.000166 seconds Node: bert/encoder/layer_3/attention/output/LayerNorm/batchnorm/add, Execution Time: 0.000087 seconds Node: bert/encoder/layer_3/attention/output/LayerNorm/batchnorm/Rsqrt, Execution Time: 0.000065 seconds Node: bert/encoder/layer_3/attention/output/LayerNorm/batchnorm/Rsqrt__353, Execution Time: 0.000088 seconds Node: bert/encoder/layer_3/attention/output/LayerNorm/batchnorm/mul, Execution Time: 0.000088 seconds Node: bert/encoder/layer_3/attention/output/LayerNorm/batchnorm/mul_2, Execution Time: 0.000091 seconds Node: bert/encoder/layer_3/attention/output/LayerNorm/batchnorm/sub, Execution Time: 0.000121 seconds Node: bert/encoder/layer_3/attention/output/LayerNorm/batchnorm/mul_1, Execution Time: 0.000647 seconds Node: bert/encoder/layer_3/attention/output/LayerNorm/batchnorm/add_1, Execution Time: 0.000765 seconds Matmul Fuse Node: bert/encoder/layer_3/intermediate/dense/MatMul, Execution Time: 0.005178 seconds Node: bert/encoder/layer_3/intermediate/dense/Pow, Execution Time: 0.000777 seconds Node: bert/encoder/layer_3/intermediate/dense/mul, Execution Time: 0.001322 seconds Node: bert/encoder/layer_3/intermediate/dense/add, Execution Time: 0.001694 seconds Node: bert/encoder/layer_3/intermediate/dense/mul_1, Execution Time: 0.001363 seconds Node: bert/encoder/layer_3/intermediate/dense/Tanh, Execution Time: 0.001367 seconds Node: bert/encoder/layer_3/intermediate/dense/add_1, Execution Time: 0.001364 seconds Node: bert/encoder/layer_3/intermediate/dense/mul_2, Execution Time: 0.001386 seconds Node: bert/encoder/layer_3/intermediate/dense/mul_3, Execution Time: 0.001735 seconds Matmul Fuse Node: bert/encoder/layer_3/output/dense/MatMul, Execution Time: 0.002793 seconds Node: bert/encoder/layer_3/output/LayerNorm/moments/mean, Execution Time: 0.000198 seconds Node: bert/encoder/layer_3/output/LayerNorm/moments/SquaredDifference, Execution Time: 0.000254 seconds Node: bert/encoder/layer_3/output/LayerNorm/moments/SquaredDifference__355, Execution Time: 0.000350 seconds Node: bert/encoder/layer_3/output/LayerNorm/moments/variance, Execution Time: 0.000165 seconds Node: bert/encoder/layer_3/output/LayerNorm/batchnorm/add, Execution Time: 0.000089 seconds Node: bert/encoder/layer_3/output/LayerNorm/batchnorm/Rsqrt, Execution Time: 0.000067 seconds Node: bert/encoder/layer_3/output/LayerNorm/batchnorm/Rsqrt__357, Execution Time: 0.000093 seconds Node: bert/encoder/layer_3/output/LayerNorm/batchnorm/mul, Execution Time: 0.000102 seconds Node: bert/encoder/layer_3/output/LayerNorm/batchnorm/mul_2, Execution Time: 0.000090 seconds Node: bert/encoder/layer_3/output/LayerNorm/batchnorm/sub, Execution Time: 0.000095 seconds Node: bert/encoder/layer_3/output/LayerNorm/batchnorm/mul_1, Execution Time: 0.000331 seconds Node: bert/encoder/layer_3/output/LayerNorm/batchnorm/add_1, Execution Time: 0.000437 seconds Matmul Fuse Node: bert/encoder/layer_4/attention/self/value/MatMul, Execution Time: 0.003309 seconds Node: bert/encoder/layer_4/attention/self/Reshape_2, Execution Time: 0.000024 seconds Node: bert/encoder/layer_4/attention/self/transpose_2, Execution Time: 0.000269 seconds Matmul Fuse Node: bert/encoder/layer_4/attention/self/query/MatMul, Execution Time: 0.002913 seconds Node: bert/encoder/layer_4/attention/self/Reshape, Execution Time: 0.000016 seconds Node: bert/encoder/layer_4/attention/self/transpose, Execution Time: 0.000258 seconds Matmul Fuse Node: bert/encoder/layer_4/attention/self/key/MatMul, Execution Time: 0.002810 seconds Node: bert/encoder/layer_4/attention/self/Reshape_1, Execution Time: 0.000014 seconds Node: bert/encoder/layer_4/attention/self/MatMul__362, Execution Time: 0.000257 seconds Node: bert/encoder/layer_4/attention/self/MatMul, Execution Time: 0.001524 seconds Node: bert/encoder/layer_4/attention/self/Mul, Execution Time: 0.001288 seconds Node: bert/encoder/layer_4/attention/self/add, Execution Time: 0.002067 seconds Node: bert/encoder/layer_4/attention/self/Softmax, Execution Time: 0.002591 seconds Node: bert/encoder/layer_4/attention/self/MatMul_1, Execution Time: 0.001322 seconds Node: bert/encoder/layer_4/attention/self/transpose_3, Execution Time: 0.000259 seconds Node: bert/encoder/layer_4/attention/self/Reshape_3, Execution Time: 0.000069 seconds Matmul Fuse Node: bert/encoder/layer_4/attention/output/dense/MatMul, Execution Time: 0.001811 seconds Node: bert/encoder/layer_4/attention/output/LayerNorm/moments/mean, Execution Time: 0.000319 seconds Node: bert/encoder/layer_4/attention/output/LayerNorm/moments/SquaredDifference, Execution Time: 0.000281 seconds Node: bert/encoder/layer_4/attention/output/LayerNorm/moments/SquaredDifference__365, Execution Time: 0.000349 seconds Node: bert/encoder/layer_4/attention/output/LayerNorm/moments/variance, Execution Time: 0.000166 seconds Node: bert/encoder/layer_4/attention/output/LayerNorm/batchnorm/add, Execution Time: 0.000101 seconds Node: bert/encoder/layer_4/attention/output/LayerNorm/batchnorm/Rsqrt, Execution Time: 0.000066 seconds Node: bert/encoder/layer_4/attention/output/LayerNorm/batchnorm/Rsqrt__367, Execution Time: 0.000091 seconds Node: bert/encoder/layer_4/attention/output/LayerNorm/batchnorm/mul, Execution Time: 0.000090 seconds Node: bert/encoder/layer_4/attention/output/LayerNorm/batchnorm/mul_2, Execution Time: 0.000092 seconds Node: bert/encoder/layer_4/attention/output/LayerNorm/batchnorm/sub, Execution Time: 0.000090 seconds Node: bert/encoder/layer_4/attention/output/LayerNorm/batchnorm/mul_1, Execution Time: 0.000656 seconds Node: bert/encoder/layer_4/attention/output/LayerNorm/batchnorm/add_1, Execution Time: 0.000790 seconds Matmul Fuse Node: bert/encoder/layer_4/intermediate/dense/MatMul, Execution Time: 0.004804 seconds Node: bert/encoder/layer_4/intermediate/dense/Pow, Execution Time: 0.000735 seconds Node: bert/encoder/layer_4/intermediate/dense/mul, Execution Time: 0.001317 seconds Node: bert/encoder/layer_4/intermediate/dense/add, Execution Time: 0.001773 seconds Node: bert/encoder/layer_4/intermediate/dense/mul_1, Execution Time: 0.001177 seconds Node: bert/encoder/layer_4/intermediate/dense/Tanh, Execution Time: 0.001105 seconds Node: bert/encoder/layer_4/intermediate/dense/add_1, Execution Time: 0.001135 seconds Node: bert/encoder/layer_4/intermediate/dense/mul_2, Execution Time: 0.001167 seconds Node: bert/encoder/layer_4/intermediate/dense/mul_3, Execution Time: 0.001374 seconds Matmul Fuse Node: bert/encoder/layer_4/output/dense/MatMul, Execution Time: 0.002819 seconds Node: bert/encoder/layer_4/output/LayerNorm/moments/mean, Execution Time: 0.000196 seconds Node: bert/encoder/layer_4/output/LayerNorm/moments/SquaredDifference, Execution Time: 0.000250 seconds Node: bert/encoder/layer_4/output/LayerNorm/moments/SquaredDifference__369, Execution Time: 0.000369 seconds Node: bert/encoder/layer_4/output/LayerNorm/moments/variance, Execution Time: 0.000168 seconds Node: bert/encoder/layer_4/output/LayerNorm/batchnorm/add, Execution Time: 0.000091 seconds Node: bert/encoder/layer_4/output/LayerNorm/batchnorm/Rsqrt, Execution Time: 0.000066 seconds Node: bert/encoder/layer_4/output/LayerNorm/batchnorm/Rsqrt__371, Execution Time: 0.000086 seconds Node: bert/encoder/layer_4/output/LayerNorm/batchnorm/mul, Execution Time: 0.000090 seconds Node: bert/encoder/layer_4/output/LayerNorm/batchnorm/mul_2, Execution Time: 0.000083 seconds Node: bert/encoder/layer_4/output/LayerNorm/batchnorm/sub, Execution Time: 0.000093 seconds Node: bert/encoder/layer_4/output/LayerNorm/batchnorm/mul_1, Execution Time: 0.000336 seconds Node: bert/encoder/layer_4/output/LayerNorm/batchnorm/add_1, Execution Time: 0.000502 seconds Matmul Fuse Node: bert/encoder/layer_5/attention/self/value/MatMul, Execution Time: 0.004371 seconds Node: bert/encoder/layer_5/attention/self/Reshape_2, Execution Time: 0.000025 seconds Node: bert/encoder/layer_5/attention/self/transpose_2, Execution Time: 0.000261 seconds Matmul Fuse Node: bert/encoder/layer_5/attention/self/query/MatMul, Execution Time: 0.002672 seconds Node: bert/encoder/layer_5/attention/self/Reshape, Execution Time: 0.000013 seconds Node: bert/encoder/layer_5/attention/self/transpose, Execution Time: 0.000262 seconds Matmul Fuse Node: bert/encoder/layer_5/attention/self/key/MatMul, Execution Time: 0.002717 seconds Node: bert/encoder/layer_5/attention/self/Reshape_1, Execution Time: 0.000013 seconds Node: bert/encoder/layer_5/attention/self/MatMul__376, Execution Time: 0.000262 seconds Node: bert/encoder/layer_5/attention/self/MatMul, Execution Time: 0.001562 seconds Node: bert/encoder/layer_5/attention/self/Mul, Execution Time: 0.001664 seconds Node: bert/encoder/layer_5/attention/self/add, Execution Time: 0.002286 seconds Node: bert/encoder/layer_5/attention/self/Softmax, Execution Time: 0.003442 seconds Node: bert/encoder/layer_5/attention/self/MatMul_1, Execution Time: 0.002026 seconds Node: bert/encoder/layer_5/attention/self/transpose_3, Execution Time: 0.000359 seconds Node: bert/encoder/layer_5/attention/self/Reshape_3, Execution Time: 0.000121 seconds Matmul Fuse Node: bert/encoder/layer_5/attention/output/dense/MatMul, Execution Time: 0.001645 seconds Node: bert/encoder/layer_5/attention/output/LayerNorm/moments/mean, Execution Time: 0.000262 seconds Node: bert/encoder/layer_5/attention/output/LayerNorm/moments/SquaredDifference, Execution Time: 0.000337 seconds Node: bert/encoder/layer_5/attention/output/LayerNorm/moments/SquaredDifference__379, Execution Time: 0.000455 seconds Node: bert/encoder/layer_5/attention/output/LayerNorm/moments/variance, Execution Time: 0.000208 seconds Node: bert/encoder/layer_5/attention/output/LayerNorm/batchnorm/add, Execution Time: 0.000117 seconds Node: bert/encoder/layer_5/attention/output/LayerNorm/batchnorm/Rsqrt, Execution Time: 0.000081 seconds Node: bert/encoder/layer_5/attention/output/LayerNorm/batchnorm/Rsqrt__381, Execution Time: 0.000113 seconds Node: bert/encoder/layer_5/attention/output/LayerNorm/batchnorm/mul, Execution Time: 0.000124 seconds Node: bert/encoder/layer_5/attention/output/LayerNorm/batchnorm/mul_2, Execution Time: 0.000107 seconds Node: bert/encoder/layer_5/attention/output/LayerNorm/batchnorm/sub, Execution Time: 0.000108 seconds Node: bert/encoder/layer_5/attention/output/LayerNorm/batchnorm/mul_1, Execution Time: 0.000670 seconds Node: bert/encoder/layer_5/attention/output/LayerNorm/batchnorm/add_1, Execution Time: 0.000759 seconds Matmul Fuse Node: bert/encoder/layer_5/intermediate/dense/MatMul, Execution Time: 0.004532 seconds Node: bert/encoder/layer_5/intermediate/dense/Pow, Execution Time: 0.000731 seconds Node: bert/encoder/layer_5/intermediate/dense/mul, Execution Time: 0.001324 seconds Node: bert/encoder/layer_5/intermediate/dense/add, Execution Time: 0.001900 seconds Node: bert/encoder/layer_5/intermediate/dense/mul_1, Execution Time: 0.001656 seconds Node: bert/encoder/layer_5/intermediate/dense/Tanh, Execution Time: 0.001851 seconds Node: bert/encoder/layer_5/intermediate/dense/add_1, Execution Time: 0.001699 seconds Node: bert/encoder/layer_5/intermediate/dense/mul_2, Execution Time: 0.001656 seconds Node: bert/encoder/layer_5/intermediate/dense/mul_3, Execution Time: 0.002165 seconds Matmul Fuse Node: bert/encoder/layer_5/output/dense/MatMul, Execution Time: 0.003160 seconds Node: bert/encoder/layer_5/output/LayerNorm/moments/mean, Execution Time: 0.000202 seconds Node: bert/encoder/layer_5/output/LayerNorm/moments/SquaredDifference, Execution Time: 0.000256 seconds Node: bert/encoder/layer_5/output/LayerNorm/moments/SquaredDifference__383, Execution Time: 0.000363 seconds Node: bert/encoder/layer_5/output/LayerNorm/moments/variance, Execution Time: 0.000166 seconds Node: bert/encoder/layer_5/output/LayerNorm/batchnorm/add, Execution Time: 0.000090 seconds Node: bert/encoder/layer_5/output/LayerNorm/batchnorm/Rsqrt, Execution Time: 0.000065 seconds Node: bert/encoder/layer_5/output/LayerNorm/batchnorm/Rsqrt__385, Execution Time: 0.000094 seconds Node: bert/encoder/layer_5/output/LayerNorm/batchnorm/mul, Execution Time: 0.000087 seconds Node: bert/encoder/layer_5/output/LayerNorm/batchnorm/mul_2, Execution Time: 0.000082 seconds Node: bert/encoder/layer_5/output/LayerNorm/batchnorm/sub, Execution Time: 0.000092 seconds Node: bert/encoder/layer_5/output/LayerNorm/batchnorm/mul_1, Execution Time: 0.000328 seconds Node: bert/encoder/layer_5/output/LayerNorm/batchnorm/add_1, Execution Time: 0.000473 seconds Matmul Fuse Node: bert/encoder/layer_6/attention/self/value/MatMul, Execution Time: 0.003479 seconds Node: bert/encoder/layer_6/attention/self/Reshape_2, Execution Time: 0.000024 seconds Node: bert/encoder/layer_6/attention/self/transpose_2, Execution Time: 0.000279 seconds Matmul Fuse Node: bert/encoder/layer_6/attention/self/query/MatMul, Execution Time: 0.003534 seconds Node: bert/encoder/layer_6/attention/self/Reshape, Execution Time: 0.000068 seconds Node: bert/encoder/layer_6/attention/self/transpose, Execution Time: 0.000273 seconds Matmul Fuse Node: bert/encoder/layer_6/attention/self/key/MatMul, Execution Time: 0.003088 seconds Node: bert/encoder/layer_6/attention/self/Reshape_1, Execution Time: 0.000022 seconds Node: bert/encoder/layer_6/attention/self/MatMul__390, Execution Time: 0.000259 seconds Node: bert/encoder/layer_6/attention/self/MatMul, Execution Time: 0.001803 seconds Node: bert/encoder/layer_6/attention/self/Mul, Execution Time: 0.001834 seconds Node: bert/encoder/layer_6/attention/self/add, Execution Time: 0.002524 seconds Node: bert/encoder/layer_6/attention/self/Softmax, Execution Time: 0.002284 seconds Node: bert/encoder/layer_6/attention/self/MatMul_1, Execution Time: 0.001416 seconds Node: bert/encoder/layer_6/attention/self/transpose_3, Execution Time: 0.000263 seconds Node: bert/encoder/layer_6/attention/self/Reshape_3, Execution Time: 0.000065 seconds Matmul Fuse Node: bert/encoder/layer_6/attention/output/dense/MatMul, Execution Time: 0.001497 seconds Node: bert/encoder/layer_6/attention/output/LayerNorm/moments/mean, Execution Time: 0.000253 seconds Node: bert/encoder/layer_6/attention/output/LayerNorm/moments/SquaredDifference, Execution Time: 0.000266 seconds Node: bert/encoder/layer_6/attention/output/LayerNorm/moments/SquaredDifference__393, Execution Time: 0.000355 seconds Node: bert/encoder/layer_6/attention/output/LayerNorm/moments/variance, Execution Time: 0.000189 seconds Node: bert/encoder/layer_6/attention/output/LayerNorm/batchnorm/add, Execution Time: 0.000104 seconds Node: bert/encoder/layer_6/attention/output/LayerNorm/batchnorm/Rsqrt, Execution Time: 0.000074 seconds Node: bert/encoder/layer_6/attention/output/LayerNorm/batchnorm/Rsqrt__395, Execution Time: 0.000100 seconds Node: bert/encoder/layer_6/attention/output/LayerNorm/batchnorm/mul, Execution Time: 0.000105 seconds Node: bert/encoder/layer_6/attention/output/LayerNorm/batchnorm/mul_2, Execution Time: 0.000097 seconds Node: bert/encoder/layer_6/attention/output/LayerNorm/batchnorm/sub, Execution Time: 0.000097 seconds Node: bert/encoder/layer_6/attention/output/LayerNorm/batchnorm/mul_1, Execution Time: 0.000538 seconds Node: bert/encoder/layer_6/attention/output/LayerNorm/batchnorm/add_1, Execution Time: 0.000814 seconds Matmul Fuse Node: bert/encoder/layer_6/intermediate/dense/MatMul, Execution Time: 0.005059 seconds Node: bert/encoder/layer_6/intermediate/dense/Pow, Execution Time: 0.000759 seconds Node: bert/encoder/layer_6/intermediate/dense/mul, Execution Time: 0.001392 seconds Node: bert/encoder/layer_6/intermediate/dense/add, Execution Time: 0.001679 seconds Node: bert/encoder/layer_6/intermediate/dense/mul_1, Execution Time: 0.001218 seconds Node: bert/encoder/layer_6/intermediate/dense/Tanh, Execution Time: 0.001140 seconds Node: bert/encoder/layer_6/intermediate/dense/add_1, Execution Time: 0.001200 seconds Node: bert/encoder/layer_6/intermediate/dense/mul_2, Execution Time: 0.001525 seconds Node: bert/encoder/layer_6/intermediate/dense/mul_3, Execution Time: 0.001487 seconds Matmul Fuse Node: bert/encoder/layer_6/output/dense/MatMul, Execution Time: 0.002849 seconds Node: bert/encoder/layer_6/output/LayerNorm/moments/mean, Execution Time: 0.000196 seconds Node: bert/encoder/layer_6/output/LayerNorm/moments/SquaredDifference, Execution Time: 0.000270 seconds Node: bert/encoder/layer_6/output/LayerNorm/moments/SquaredDifference__397, Execution Time: 0.000353 seconds Node: bert/encoder/layer_6/output/LayerNorm/moments/variance, Execution Time: 0.000168 seconds Node: bert/encoder/layer_6/output/LayerNorm/batchnorm/add, Execution Time: 0.000091 seconds Node: bert/encoder/layer_6/output/LayerNorm/batchnorm/Rsqrt, Execution Time: 0.000064 seconds Node: bert/encoder/layer_6/output/LayerNorm/batchnorm/Rsqrt__399, Execution Time: 0.000089 seconds Node: bert/encoder/layer_6/output/LayerNorm/batchnorm/mul, Execution Time: 0.000087 seconds Node: bert/encoder/layer_6/output/LayerNorm/batchnorm/mul_2, Execution Time: 0.000090 seconds Node: bert/encoder/layer_6/output/LayerNorm/batchnorm/sub, Execution Time: 0.000103 seconds Node: bert/encoder/layer_6/output/LayerNorm/batchnorm/mul_1, Execution Time: 0.000399 seconds Node: bert/encoder/layer_6/output/LayerNorm/batchnorm/add_1, Execution Time: 0.000506 seconds Matmul Fuse Node: bert/encoder/layer_7/attention/self/value/MatMul, Execution Time: 0.003528 seconds Node: bert/encoder/layer_7/attention/self/Reshape_2, Execution Time: 0.000024 seconds Node: bert/encoder/layer_7/attention/self/transpose_2, Execution Time: 0.000266 seconds Matmul Fuse Node: bert/encoder/layer_7/attention/self/query/MatMul, Execution Time: 0.002841 seconds Node: bert/encoder/layer_7/attention/self/Reshape, Execution Time: 0.000015 seconds Node: bert/encoder/layer_7/attention/self/transpose, Execution Time: 0.000277 seconds Matmul Fuse Node: bert/encoder/layer_7/attention/self/key/MatMul, Execution Time: 0.002693 seconds Node: bert/encoder/layer_7/attention/self/Reshape_1, Execution Time: 0.000013 seconds Node: bert/encoder/layer_7/attention/self/MatMul__404, Execution Time: 0.000254 seconds Node: bert/encoder/layer_7/attention/self/MatMul, Execution Time: 0.001493 seconds Node: bert/encoder/layer_7/attention/self/Mul, Execution Time: 0.001176 seconds Node: bert/encoder/layer_7/attention/self/add, Execution Time: 0.001767 seconds Node: bert/encoder/layer_7/attention/self/Softmax, Execution Time: 0.001926 seconds Node: bert/encoder/layer_7/attention/self/MatMul_1, Execution Time: 0.001131 seconds Node: bert/encoder/layer_7/attention/self/transpose_3, Execution Time: 0.000245 seconds Node: bert/encoder/layer_7/attention/self/Reshape_3, Execution Time: 0.000052 seconds Matmul Fuse Node: bert/encoder/layer_7/attention/output/dense/MatMul, Execution Time: 0.001315 seconds Node: bert/encoder/layer_7/attention/output/LayerNorm/moments/mean, Execution Time: 0.000198 seconds Node: bert/encoder/layer_7/attention/output/LayerNorm/moments/SquaredDifference, Execution Time: 0.000283 seconds Node: bert/encoder/layer_7/attention/output/LayerNorm/moments/SquaredDifference__407, Execution Time: 0.000343 seconds Node: bert/encoder/layer_7/attention/output/LayerNorm/moments/variance, Execution Time: 0.000163 seconds Node: bert/encoder/layer_7/attention/output/LayerNorm/batchnorm/add, Execution Time: 0.000094 seconds Node: bert/encoder/layer_7/attention/output/LayerNorm/batchnorm/Rsqrt, Execution Time: 0.000066 seconds Node: bert/encoder/layer_7/attention/output/LayerNorm/batchnorm/Rsqrt__409, Execution Time: 0.000086 seconds Node: bert/encoder/layer_7/attention/output/LayerNorm/batchnorm/mul, Execution Time: 0.000087 seconds Node: bert/encoder/layer_7/attention/output/LayerNorm/batchnorm/mul_2, Execution Time: 0.000086 seconds Node: bert/encoder/layer_7/attention/output/LayerNorm/batchnorm/sub, Execution Time: 0.000088 seconds Node: bert/encoder/layer_7/attention/output/LayerNorm/batchnorm/mul_1, Execution Time: 0.000602 seconds Node: bert/encoder/layer_7/attention/output/LayerNorm/batchnorm/add_1, Execution Time: 0.000737 seconds Matmul Fuse Node: bert/encoder/layer_7/intermediate/dense/MatMul, Execution Time: 0.004372 seconds Node: bert/encoder/layer_7/intermediate/dense/Pow, Execution Time: 0.000726 seconds Node: bert/encoder/layer_7/intermediate/dense/mul, Execution Time: 0.001186 seconds Node: bert/encoder/layer_7/intermediate/dense/add, Execution Time: 0.001428 seconds Node: bert/encoder/layer_7/intermediate/dense/mul_1, Execution Time: 0.001146 seconds Node: bert/encoder/layer_7/intermediate/dense/Tanh, Execution Time: 0.001076 seconds Node: bert/encoder/layer_7/intermediate/dense/add_1, Execution Time: 0.001104 seconds Node: bert/encoder/layer_7/intermediate/dense/mul_2, Execution Time: 0.001114 seconds Node: bert/encoder/layer_7/intermediate/dense/mul_3, Execution Time: 0.001438 seconds Matmul Fuse Node: bert/encoder/layer_7/output/dense/MatMul, Execution Time: 0.002922 seconds Node: bert/encoder/layer_7/output/LayerNorm/moments/mean, Execution Time: 0.000199 seconds Node: bert/encoder/layer_7/output/LayerNorm/moments/SquaredDifference, Execution Time: 0.000262 seconds Node: bert/encoder/layer_7/output/LayerNorm/moments/SquaredDifference__411, Execution Time: 0.000351 seconds Node: bert/encoder/layer_7/output/LayerNorm/moments/variance, Execution Time: 0.000172 seconds Node: bert/encoder/layer_7/output/LayerNorm/batchnorm/add, Execution Time: 0.000102 seconds Node: bert/encoder/layer_7/output/LayerNorm/batchnorm/Rsqrt, Execution Time: 0.000077 seconds Node: bert/encoder/layer_7/output/LayerNorm/batchnorm/Rsqrt__413, Execution Time: 0.000107 seconds Node: bert/encoder/layer_7/output/LayerNorm/batchnorm/mul, Execution Time: 0.000113 seconds Node: bert/encoder/layer_7/output/LayerNorm/batchnorm/mul_2, Execution Time: 0.000107 seconds Node: bert/encoder/layer_7/output/LayerNorm/batchnorm/sub, Execution Time: 0.000110 seconds Node: bert/encoder/layer_7/output/LayerNorm/batchnorm/mul_1, Execution Time: 0.000367 seconds Node: bert/encoder/layer_7/output/LayerNorm/batchnorm/add_1, Execution Time: 0.000520 seconds Matmul Fuse Node: bert/encoder/layer_8/attention/self/value/MatMul, Execution Time: 0.003624 seconds Node: bert/encoder/layer_8/attention/self/Reshape_2, Execution Time: 0.000025 seconds Node: bert/encoder/layer_8/attention/self/transpose_2, Execution Time: 0.000271 seconds Matmul Fuse Node: bert/encoder/layer_8/attention/self/query/MatMul, Execution Time: 0.002746 seconds Node: bert/encoder/layer_8/attention/self/Reshape, Execution Time: 0.000013 seconds Node: bert/encoder/layer_8/attention/self/transpose, Execution Time: 0.000253 seconds Matmul Fuse Node: bert/encoder/layer_8/attention/self/key/MatMul, Execution Time: 0.002611 seconds Node: bert/encoder/layer_8/attention/self/Reshape_1, Execution Time: 0.000013 seconds Node: bert/encoder/layer_8/attention/self/MatMul__418, Execution Time: 0.000258 seconds Node: bert/encoder/layer_8/attention/self/MatMul, Execution Time: 0.001474 seconds Node: bert/encoder/layer_8/attention/self/Mul, Execution Time: 0.001234 seconds Node: bert/encoder/layer_8/attention/self/add, Execution Time: 0.001760 seconds Node: bert/encoder/layer_8/attention/self/Softmax, Execution Time: 0.001936 seconds Node: bert/encoder/layer_8/attention/self/MatMul_1, Execution Time: 0.001112 seconds Node: bert/encoder/layer_8/attention/self/transpose_3, Execution Time: 0.000244 seconds Node: bert/encoder/layer_8/attention/self/Reshape_3, Execution Time: 0.000051 seconds Matmul Fuse Node: bert/encoder/layer_8/attention/output/dense/MatMul, Execution Time: 0.001265 seconds Node: bert/encoder/layer_8/attention/output/LayerNorm/moments/mean, Execution Time: 0.000198 seconds Node: bert/encoder/layer_8/attention/output/LayerNorm/moments/SquaredDifference, Execution Time: 0.000256 seconds Node: bert/encoder/layer_8/attention/output/LayerNorm/moments/SquaredDifference__421, Execution Time: 0.000479 seconds Node: bert/encoder/layer_8/attention/output/LayerNorm/moments/variance, Execution Time: 0.000169 seconds Node: bert/encoder/layer_8/attention/output/LayerNorm/batchnorm/add, Execution Time: 0.000092 seconds Node: bert/encoder/layer_8/attention/output/LayerNorm/batchnorm/Rsqrt, Execution Time: 0.000064 seconds Node: bert/encoder/layer_8/attention/output/LayerNorm/batchnorm/Rsqrt__423, Execution Time: 0.000086 seconds Node: bert/encoder/layer_8/attention/output/LayerNorm/batchnorm/mul, Execution Time: 0.000096 seconds Node: bert/encoder/layer_8/attention/output/LayerNorm/batchnorm/mul_2, Execution Time: 0.000086 seconds Node: bert/encoder/layer_8/attention/output/LayerNorm/batchnorm/sub, Execution Time: 0.000088 seconds Node: bert/encoder/layer_8/attention/output/LayerNorm/batchnorm/mul_1, Execution Time: 0.000602 seconds Node: bert/encoder/layer_8/attention/output/LayerNorm/batchnorm/add_1, Execution Time: 0.000705 seconds Matmul Fuse Node: bert/encoder/layer_8/intermediate/dense/MatMul, Execution Time: 0.004451 seconds Node: bert/encoder/layer_8/intermediate/dense/Pow, Execution Time: 0.000748 seconds Node: bert/encoder/layer_8/intermediate/dense/mul, Execution Time: 0.001153 seconds Node: bert/encoder/layer_8/intermediate/dense/add, Execution Time: 0.001473 seconds Node: bert/encoder/layer_8/intermediate/dense/mul_1, Execution Time: 0.001107 seconds Node: bert/encoder/layer_8/intermediate/dense/Tanh, Execution Time: 0.001070 seconds Node: bert/encoder/layer_8/intermediate/dense/add_1, Execution Time: 0.001121 seconds Node: bert/encoder/layer_8/intermediate/dense/mul_2, Execution Time: 0.001117 seconds Node: bert/encoder/layer_8/intermediate/dense/mul_3, Execution Time: 0.001413 seconds Matmul Fuse Node: bert/encoder/layer_8/output/dense/MatMul, Execution Time: 0.003117 seconds Node: bert/encoder/layer_8/output/LayerNorm/moments/mean, Execution Time: 0.000231 seconds Node: bert/encoder/layer_8/output/LayerNorm/moments/SquaredDifference, Execution Time: 0.000328 seconds Node: bert/encoder/layer_8/output/LayerNorm/moments/SquaredDifference__425, Execution Time: 0.000444 seconds Node: bert/encoder/layer_8/output/LayerNorm/moments/variance, Execution Time: 0.000173 seconds Node: bert/encoder/layer_8/output/LayerNorm/batchnorm/add, Execution Time: 0.000098 seconds Node: bert/encoder/layer_8/output/LayerNorm/batchnorm/Rsqrt, Execution Time: 0.000066 seconds Node: bert/encoder/layer_8/output/LayerNorm/batchnorm/Rsqrt__427, Execution Time: 0.000089 seconds Node: bert/encoder/layer_8/output/LayerNorm/batchnorm/mul, Execution Time: 0.000087 seconds Node: bert/encoder/layer_8/output/LayerNorm/batchnorm/mul_2, Execution Time: 0.000087 seconds Node: bert/encoder/layer_8/output/LayerNorm/batchnorm/sub, Execution Time: 0.000093 seconds Node: bert/encoder/layer_8/output/LayerNorm/batchnorm/mul_1, Execution Time: 0.000345 seconds Node: bert/encoder/layer_8/output/LayerNorm/batchnorm/add_1, Execution Time: 0.000465 seconds Matmul Fuse Node: bert/encoder/layer_9/attention/self/value/MatMul, Execution Time: 0.003488 seconds Node: bert/encoder/layer_9/attention/self/Reshape_2, Execution Time: 0.000024 seconds Node: bert/encoder/layer_9/attention/self/transpose_2, Execution Time: 0.000309 seconds Matmul Fuse Node: bert/encoder/layer_9/attention/self/query/MatMul, Execution Time: 0.002822 seconds Node: bert/encoder/layer_9/attention/self/Reshape, Execution Time: 0.000015 seconds Node: bert/encoder/layer_9/attention/self/transpose, Execution Time: 0.000254 seconds Matmul Fuse Node: bert/encoder/layer_9/attention/self/key/MatMul, Execution Time: 0.002754 seconds Node: bert/encoder/layer_9/attention/self/Reshape_1, Execution Time: 0.000015 seconds Node: bert/encoder/layer_9/attention/self/MatMul__432, Execution Time: 0.000256 seconds Node: bert/encoder/layer_9/attention/self/MatMul, Execution Time: 0.001503 seconds Node: bert/encoder/layer_9/attention/self/Mul, Execution Time: 0.001231 seconds Node: bert/encoder/layer_9/attention/self/add, Execution Time: 0.001827 seconds Node: bert/encoder/layer_9/attention/self/Softmax, Execution Time: 0.001956 seconds Node: bert/encoder/layer_9/attention/self/MatMul_1, Execution Time: 0.001155 seconds Node: bert/encoder/layer_9/attention/self/transpose_3, Execution Time: 0.000246 seconds Node: bert/encoder/layer_9/attention/self/Reshape_3, Execution Time: 0.000056 seconds Matmul Fuse Node: bert/encoder/layer_9/attention/output/dense/MatMul, Execution Time: 0.001328 seconds Node: bert/encoder/layer_9/attention/output/LayerNorm/moments/mean, Execution Time: 0.000201 seconds Node: bert/encoder/layer_9/attention/output/LayerNorm/moments/SquaredDifference, Execution Time: 0.000271 seconds Node: bert/encoder/layer_9/attention/output/LayerNorm/moments/SquaredDifference__435, Execution Time: 0.000350 seconds Node: bert/encoder/layer_9/attention/output/LayerNorm/moments/variance, Execution Time: 0.000163 seconds Node: bert/encoder/layer_9/attention/output/LayerNorm/batchnorm/add, Execution Time: 0.000107 seconds Node: bert/encoder/layer_9/attention/output/LayerNorm/batchnorm/Rsqrt, Execution Time: 0.000065 seconds Node: bert/encoder/layer_9/attention/output/LayerNorm/batchnorm/Rsqrt__437, Execution Time: 0.000087 seconds Node: bert/encoder/layer_9/attention/output/LayerNorm/batchnorm/mul, Execution Time: 0.000099 seconds Node: bert/encoder/layer_9/attention/output/LayerNorm/batchnorm/mul_2, Execution Time: 0.000088 seconds Node: bert/encoder/layer_9/attention/output/LayerNorm/batchnorm/sub, Execution Time: 0.000087 seconds Node: bert/encoder/layer_9/attention/output/LayerNorm/batchnorm/mul_1, Execution Time: 0.000598 seconds Node: bert/encoder/layer_9/attention/output/LayerNorm/batchnorm/add_1, Execution Time: 0.000726 seconds Matmul Fuse Node: bert/encoder/layer_9/intermediate/dense/MatMul, Execution Time: 0.004899 seconds Node: bert/encoder/layer_9/intermediate/dense/Pow, Execution Time: 0.000729 seconds Node: bert/encoder/layer_9/intermediate/dense/mul, Execution Time: 0.001312 seconds Node: bert/encoder/layer_9/intermediate/dense/add, Execution Time: 0.001624 seconds Node: bert/encoder/layer_9/intermediate/dense/mul_1, Execution Time: 0.001606 seconds Node: bert/encoder/layer_9/intermediate/dense/Tanh, Execution Time: 0.001328 seconds Node: bert/encoder/layer_9/intermediate/dense/add_1, Execution Time: 0.001363 seconds Node: bert/encoder/layer_9/intermediate/dense/mul_2, Execution Time: 0.001334 seconds Node: bert/encoder/layer_9/intermediate/dense/mul_3, Execution Time: 0.001719 seconds Matmul Fuse Node: bert/encoder/layer_9/output/dense/MatMul, Execution Time: 0.003271 seconds Node: bert/encoder/layer_9/output/LayerNorm/moments/mean, Execution Time: 0.000205 seconds Node: bert/encoder/layer_9/output/LayerNorm/moments/SquaredDifference, Execution Time: 0.000263 seconds Node: bert/encoder/layer_9/output/LayerNorm/moments/SquaredDifference__439, Execution Time: 0.000350 seconds Node: bert/encoder/layer_9/output/LayerNorm/moments/variance, Execution Time: 0.000167 seconds Node: bert/encoder/layer_9/output/LayerNorm/batchnorm/add, Execution Time: 0.000093 seconds Node: bert/encoder/layer_9/output/LayerNorm/batchnorm/Rsqrt, Execution Time: 0.000072 seconds Node: bert/encoder/layer_9/output/LayerNorm/batchnorm/Rsqrt__441, Execution Time: 0.000094 seconds Node: bert/encoder/layer_9/output/LayerNorm/batchnorm/mul, Execution Time: 0.000098 seconds Node: bert/encoder/layer_9/output/LayerNorm/batchnorm/mul_2, Execution Time: 0.000089 seconds Node: bert/encoder/layer_9/output/LayerNorm/batchnorm/sub, Execution Time: 0.000091 seconds Node: bert/encoder/layer_9/output/LayerNorm/batchnorm/mul_1, Execution Time: 0.000326 seconds Node: bert/encoder/layer_9/output/LayerNorm/batchnorm/add_1, Execution Time: 0.000458 seconds Matmul Fuse Node: bert/encoder/layer_10/attention/self/value/MatMul, Execution Time: 0.004776 seconds Node: bert/encoder/layer_10/attention/self/Reshape_2, Execution Time: 0.000025 seconds Node: bert/encoder/layer_10/attention/self/transpose_2, Execution Time: 0.000267 seconds Matmul Fuse Node: bert/encoder/layer_10/attention/self/query/MatMul, Execution Time: 0.002937 seconds Node: bert/encoder/layer_10/attention/self/Reshape, Execution Time: 0.000017 seconds Node: bert/encoder/layer_10/attention/self/transpose, Execution Time: 0.000268 seconds Matmul Fuse Node: bert/encoder/layer_10/attention/self/key/MatMul, Execution Time: 0.002784 seconds Node: bert/encoder/layer_10/attention/self/Reshape_1, Execution Time: 0.000016 seconds Node: bert/encoder/layer_10/attention/self/MatMul__446, Execution Time: 0.000262 seconds Node: bert/encoder/layer_10/attention/self/MatMul, Execution Time: 0.001536 seconds Node: bert/encoder/layer_10/attention/self/Mul, Execution Time: 0.001282 seconds Node: bert/encoder/layer_10/attention/self/add, Execution Time: 0.002008 seconds Node: bert/encoder/layer_10/attention/self/Softmax, Execution Time: 0.002279 seconds Node: bert/encoder/layer_10/attention/self/MatMul_1, Execution Time: 0.001209 seconds Node: bert/encoder/layer_10/attention/self/transpose_3, Execution Time: 0.000251 seconds Node: bert/encoder/layer_10/attention/self/Reshape_3, Execution Time: 0.000054 seconds Matmul Fuse Node: bert/encoder/layer_10/attention/output/dense/MatMul, Execution Time: 0.001207 seconds Node: bert/encoder/layer_10/attention/output/LayerNorm/moments/mean, Execution Time: 0.000205 seconds Node: bert/encoder/layer_10/attention/output/LayerNorm/moments/SquaredDifference, Execution Time: 0.000254 seconds Node: bert/encoder/layer_10/attention/output/LayerNorm/moments/SquaredDifference__449, Execution Time: 0.000342 seconds Node: bert/encoder/layer_10/attention/output/LayerNorm/moments/variance, Execution Time: 0.000165 seconds Node: bert/encoder/layer_10/attention/output/LayerNorm/batchnorm/add, Execution Time: 0.000092 seconds Node: bert/encoder/layer_10/attention/output/LayerNorm/batchnorm/Rsqrt, Execution Time: 0.000062 seconds Node: bert/encoder/layer_10/attention/output/LayerNorm/batchnorm/Rsqrt__451, Execution Time: 0.000090 seconds Node: bert/encoder/layer_10/attention/output/LayerNorm/batchnorm/mul, Execution Time: 0.000097 seconds Node: bert/encoder/layer_10/attention/output/LayerNorm/batchnorm/mul_2, Execution Time: 0.000091 seconds Node: bert/encoder/layer_10/attention/output/LayerNorm/batchnorm/sub, Execution Time: 0.000091 seconds Node: bert/encoder/layer_10/attention/output/LayerNorm/batchnorm/mul_1, Execution Time: 0.000335 seconds Node: bert/encoder/layer_10/attention/output/LayerNorm/batchnorm/add_1, Execution Time: 0.000435 seconds Matmul Fuse Node: bert/encoder/layer_10/intermediate/dense/MatMul, Execution Time: 0.004598 seconds Node: bert/encoder/layer_10/intermediate/dense/Pow, Execution Time: 0.000743 seconds Node: bert/encoder/layer_10/intermediate/dense/mul, Execution Time: 0.001343 seconds Node: bert/encoder/layer_10/intermediate/dense/add, Execution Time: 0.001630 seconds Node: bert/encoder/layer_10/intermediate/dense/mul_1, Execution Time: 0.001354 seconds Node: bert/encoder/layer_10/intermediate/dense/Tanh, Execution Time: 0.001309 seconds Node: bert/encoder/layer_10/intermediate/dense/add_1, Execution Time: 0.001358 seconds Node: bert/encoder/layer_10/intermediate/dense/mul_2, Execution Time: 0.001358 seconds Node: bert/encoder/layer_10/intermediate/dense/mul_3, Execution Time: 0.001723 seconds Matmul Fuse Node: bert/encoder/layer_10/output/dense/MatMul, Execution Time: 0.002816 seconds Node: bert/encoder/layer_10/output/LayerNorm/moments/mean, Execution Time: 0.000207 seconds Node: bert/encoder/layer_10/output/LayerNorm/moments/SquaredDifference, Execution Time: 0.000259 seconds Node: bert/encoder/layer_10/output/LayerNorm/moments/SquaredDifference__453, Execution Time: 0.000344 seconds Node: bert/encoder/layer_10/output/LayerNorm/moments/variance, Execution Time: 0.000167 seconds Node: bert/encoder/layer_10/output/LayerNorm/batchnorm/add, Execution Time: 0.000093 seconds Node: bert/encoder/layer_10/output/LayerNorm/batchnorm/Rsqrt, Execution Time: 0.000072 seconds Node: bert/encoder/layer_10/output/LayerNorm/batchnorm/Rsqrt__455, Execution Time: 0.000178 seconds Node: bert/encoder/layer_10/output/LayerNorm/batchnorm/mul, Execution Time: 0.000103 seconds Node: bert/encoder/layer_10/output/LayerNorm/batchnorm/mul_2, Execution Time: 0.000090 seconds Node: bert/encoder/layer_10/output/LayerNorm/batchnorm/sub, Execution Time: 0.000089 seconds Node: bert/encoder/layer_10/output/LayerNorm/batchnorm/mul_1, Execution Time: 0.000339 seconds Node: bert/encoder/layer_10/output/LayerNorm/batchnorm/add_1, Execution Time: 0.000446 seconds Matmul Fuse Node: bert/encoder/layer_11/attention/self/value/MatMul, Execution Time: 0.003723 seconds Node: bert/encoder/layer_11/attention/self/Reshape_2, Execution Time: 0.000025 seconds Node: bert/encoder/layer_11/attention/self/transpose_2, Execution Time: 0.000271 seconds Matmul Fuse Node: bert/encoder/layer_11/attention/self/query/MatMul, Execution Time: 0.002970 seconds Node: bert/encoder/layer_11/attention/self/Reshape, Execution Time: 0.000014 seconds Node: bert/encoder/layer_11/attention/self/transpose, Execution Time: 0.000265 seconds Matmul Fuse Node: bert/encoder/layer_11/attention/self/key/MatMul, Execution Time: 0.002878 seconds Node: bert/encoder/layer_11/attention/self/Reshape_1, Execution Time: 0.000014 seconds Node: bert/encoder/layer_11/attention/self/MatMul__460, Execution Time: 0.000257 seconds Node: bert/encoder/layer_11/attention/self/MatMul, Execution Time: 0.001513 seconds Node: bert/encoder/layer_11/attention/self/Mul, Execution Time: 0.001281 seconds Node: bert/encoder/layer_11/attention/self/add, Execution Time: 0.002046 seconds Node: bert/encoder/layer_11/attention/self/Softmax, Execution Time: 0.002472 seconds Node: bert/encoder/layer_11/attention/self/MatMul_1, Execution Time: 0.001688 seconds Node: bert/encoder/layer_11/attention/self/transpose_3, Execution Time: 0.000344 seconds Node: bert/encoder/layer_11/attention/self/Reshape_3, Execution Time: 0.000085 seconds Matmul Fuse Node: bert/encoder/layer_11/attention/output/dense/MatMul, Execution Time: 0.001657 seconds Node: bert/encoder/layer_11/attention/output/LayerNorm/moments/mean, Execution Time: 0.000261 seconds Node: bert/encoder/layer_11/attention/output/LayerNorm/moments/SquaredDifference, Execution Time: 0.000317 seconds Node: bert/encoder/layer_11/attention/output/LayerNorm/moments/SquaredDifference__463, Execution Time: 0.000621 seconds Node: bert/encoder/layer_11/attention/output/LayerNorm/moments/variance, Execution Time: 0.000215 seconds Node: bert/encoder/layer_11/attention/output/LayerNorm/batchnorm/add, Execution Time: 0.000106 seconds Node: bert/encoder/layer_11/attention/output/LayerNorm/batchnorm/Rsqrt, Execution Time: 0.000080 seconds Node: bert/encoder/layer_11/attention/output/LayerNorm/batchnorm/Rsqrt__465, Execution Time: 0.000113 seconds Node: bert/encoder/layer_11/attention/output/LayerNorm/batchnorm/mul, Execution Time: 0.000109 seconds Node: bert/encoder/layer_11/attention/output/LayerNorm/batchnorm/mul_2, Execution Time: 0.000114 seconds Node: bert/encoder/layer_11/attention/output/LayerNorm/batchnorm/sub, Execution Time: 0.000122 seconds Node: bert/encoder/layer_11/attention/output/LayerNorm/batchnorm/mul_1, Execution Time: 0.000745 seconds Node: bert/encoder/layer_11/attention/output/LayerNorm/batchnorm/add_1, Execution Time: 0.000932 seconds Matmul Fuse Node: bert/encoder/layer_11/intermediate/dense/MatMul, Execution Time: 0.005398 seconds Node: bert/encoder/layer_11/intermediate/dense/Pow, Execution Time: 0.000755 seconds Node: bert/encoder/layer_11/intermediate/dense/mul, Execution Time: 0.001696 seconds Node: bert/encoder/layer_11/intermediate/dense/add, Execution Time: 0.002457 seconds Node: bert/encoder/layer_11/intermediate/dense/mul_1, Execution Time: 0.001978 seconds Node: bert/encoder/layer_11/intermediate/dense/Tanh, Execution Time: 0.001770 seconds Node: bert/encoder/layer_11/intermediate/dense/add_1, Execution Time: 0.001795 seconds Node: bert/encoder/layer_11/intermediate/dense/mul_2, Execution Time: 0.001863 seconds Node: bert/encoder/layer_11/intermediate/dense/mul_3, Execution Time: 0.001921 seconds Matmul Fuse Node: bert/encoder/layer_11/output/dense/MatMul, Execution Time: 0.003049 seconds Node: bert/encoder/layer_11/output/LayerNorm/moments/mean, Execution Time: 0.000231 seconds Node: bert/encoder/layer_11/output/LayerNorm/moments/SquaredDifference, Execution Time: 0.000329 seconds Node: bert/encoder/layer_11/output/LayerNorm/moments/SquaredDifference__467, Execution Time: 0.000438 seconds Node: bert/encoder/layer_11/output/LayerNorm/moments/variance, Execution Time: 0.000189 seconds Node: bert/encoder/layer_11/output/LayerNorm/batchnorm/add, Execution Time: 0.000154 seconds Node: bert/encoder/layer_11/output/LayerNorm/batchnorm/Rsqrt, Execution Time: 0.000168 seconds Node: bert/encoder/layer_11/output/LayerNorm/batchnorm/Rsqrt__469, Execution Time: 0.000090 seconds Node: bert/encoder/layer_11/output/LayerNorm/batchnorm/mul, Execution Time: 0.000094 seconds Node: bert/encoder/layer_11/output/LayerNorm/batchnorm/mul_2, Execution Time: 0.000083 seconds Node: bert/encoder/layer_11/output/LayerNorm/batchnorm/sub, Execution Time: 0.000087 seconds Node: bert/encoder/layer_11/output/LayerNorm/batchnorm/mul_1, Execution Time: 0.000334 seconds Node: bert/encoder/layer_11/output/LayerNorm/batchnorm/add_1, Execution Time: 0.000467 seconds Matmul Fuse Node: MatMul, Execution Time: 0.004092 seconds Node: Reshape_1, Execution Time: 0.000024 seconds Node: transpose, Execution Time: 0.000088 seconds Node: unstack, Execution Time: 0.000056 seconds Node: unstack__490, Execution Time: 0.000006 seconds Node: unstack__488, Execution Time: 0.000006 seconds Total Execution Time: 0.727311 seconds Total Matmul Fuse Execution Time: 0.253194 seconds Execution complete. Total execution time: 0.731414 seconds Model outputs: {'unstack:1': array([nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], dtype=float16), 'unstack:0': array(None, dtype=object), 'unique_ids:0': array([], dtype=int64)} Execution order: ['unique_ids_graph_outputs_Identity__10', 'bert/encoder/Shape', 'bert/encoder/Shape__12', 'bert/encoder/strided_slice', 'bert/encoder/strided_slice__16', 'bert/encoder/strided_slice__17', 'bert/encoder/ones/packed_Unsqueeze__18', 'bert/encoder/ones/packed_Concat__21', 'bert/encoder/ones__22', 'bert/encoder/ones', 'bert/encoder/Reshape', 'bert/encoder/Cast', 'bert/encoder/mul', 'bert/encoder/layer_9/attention/self/ExpandDims', 'bert/encoder/layer_9/attention/self/sub', 'bert/encoder/layer_9/attention/self/mul_1', 'bert/embeddings/Reshape_2', 'bert/embeddings/Reshape', 'bert/embeddings/GatherV2', 'bert/embeddings/Reshape_1', 'bert/embeddings/one_hot', 'bert/embeddings/MatMul', 'bert/embeddings/Reshape_3', 'bert/embeddings/add', 'bert/embeddings/add_1', 'bert/embeddings/LayerNorm/moments/mean', 'bert/embeddings/LayerNorm/moments/SquaredDifference', 'bert/embeddings/LayerNorm/moments/SquaredDifference__72', 'bert/embeddings/LayerNorm/moments/variance', 'bert/embeddings/LayerNorm/batchnorm/add', 'bert/embeddings/LayerNorm/batchnorm/Rsqrt', 'bert/embeddings/LayerNorm/batchnorm/Rsqrt__74', 'bert/embeddings/LayerNorm/batchnorm/mul', 'bert/embeddings/LayerNorm/batchnorm/mul_2', 'bert/embeddings/LayerNorm/batchnorm/sub', 'bert/embeddings/LayerNorm/batchnorm/mul_1', 'bert/embeddings/LayerNorm/batchnorm/add_1', 'bert/encoder/Reshape_1', 'bert/encoder/layer_0/attention/self/value/MatMul', 'bert/encoder/layer_0/attention/self/value/BiasAdd', 'bert/encoder/layer_0/attention/self/Reshape_2', 'bert/encoder/layer_0/attention/self/transpose_2', 'bert/encoder/layer_0/attention/self/query/MatMul', 'bert/encoder/layer_0/attention/self/query/BiasAdd', 'bert/encoder/layer_0/attention/self/Reshape', 'bert/encoder/layer_0/attention/self/transpose', 'bert/encoder/layer_0/attention/self/key/MatMul', 'bert/encoder/layer_0/attention/self/key/BiasAdd', 'bert/encoder/layer_0/attention/self/Reshape_1', 'bert/encoder/layer_0/attention/self/MatMul__306', 'bert/encoder/layer_0/attention/self/MatMul', 'bert/encoder/layer_0/attention/self/Mul', 'bert/encoder/layer_0/attention/self/add', 'bert/encoder/layer_0/attention/self/Softmax', 'bert/encoder/layer_0/attention/self/MatMul_1', 'bert/encoder/layer_0/attention/self/transpose_3', 'bert/encoder/layer_0/attention/self/Reshape_3', 'bert/encoder/layer_0/attention/output/dense/MatMul', 'bert/encoder/layer_0/attention/output/dense/BiasAdd', 'bert/encoder/layer_0/attention/output/add', 'bert/encoder/layer_0/attention/output/LayerNorm/moments/mean', 'bert/encoder/layer_0/attention/output/LayerNorm/moments/SquaredDifference', 'bert/encoder/layer_0/attention/output/LayerNorm/moments/SquaredDifference__309', 'bert/encoder/layer_0/attention/output/LayerNorm/moments/variance', 'bert/encoder/layer_0/attention/output/LayerNorm/batchnorm/add', 'bert/encoder/layer_0/attention/output/LayerNorm/batchnorm/Rsqrt', 'bert/encoder/layer_0/attention/output/LayerNorm/batchnorm/Rsqrt__311', 'bert/encoder/layer_0/attention/output/LayerNorm/batchnorm/mul', 'bert/encoder/layer_0/attention/output/LayerNorm/batchnorm/mul_2', 'bert/encoder/layer_0/attention/output/LayerNorm/batchnorm/sub', 'bert/encoder/layer_0/attention/output/LayerNorm/batchnorm/mul_1', 'bert/encoder/layer_0/attention/output/LayerNorm/batchnorm/add_1', 'bert/encoder/layer_0/intermediate/dense/MatMul', 'bert/encoder/layer_0/intermediate/dense/BiasAdd', 'bert/encoder/layer_0/intermediate/dense/Pow', 'bert/encoder/layer_0/intermediate/dense/mul', 'bert/encoder/layer_0/intermediate/dense/add', 'bert/encoder/layer_0/intermediate/dense/mul_1', 'bert/encoder/layer_0/intermediate/dense/Tanh', 'bert/encoder/layer_0/intermediate/dense/add_1', 'bert/encoder/layer_0/intermediate/dense/mul_2', 'bert/encoder/layer_0/intermediate/dense/mul_3', 'bert/encoder/layer_0/output/dense/MatMul', 'bert/encoder/layer_0/output/dense/BiasAdd', 'bert/encoder/layer_0/output/add', 'bert/encoder/layer_0/output/LayerNorm/moments/mean', 'bert/encoder/layer_0/output/LayerNorm/moments/SquaredDifference', 'bert/encoder/layer_0/output/LayerNorm/moments/SquaredDifference__313', 'bert/encoder/layer_0/output/LayerNorm/moments/variance', 'bert/encoder/layer_0/output/LayerNorm/batchnorm/add', 'bert/encoder/layer_0/output/LayerNorm/batchnorm/Rsqrt', 'bert/encoder/layer_0/output/LayerNorm/batchnorm/Rsqrt__315', 'bert/encoder/layer_0/output/LayerNorm/batchnorm/mul', 'bert/encoder/layer_0/output/LayerNorm/batchnorm/mul_2', 'bert/encoder/layer_0/output/LayerNorm/batchnorm/sub', 'bert/encoder/layer_0/output/LayerNorm/batchnorm/mul_1', 'bert/encoder/layer_0/output/LayerNorm/batchnorm/add_1', 'bert/encoder/layer_1/attention/self/value/MatMul', 'bert/encoder/layer_1/attention/self/value/BiasAdd', 'bert/encoder/layer_1/attention/self/Reshape_2', 'bert/encoder/layer_1/attention/self/transpose_2', 'bert/encoder/layer_1/attention/self/query/MatMul', 'bert/encoder/layer_1/attention/self/query/BiasAdd', 'bert/encoder/layer_1/attention/self/Reshape', 'bert/encoder/layer_1/attention/self/transpose', 'bert/encoder/layer_1/attention/self/key/MatMul', 'bert/encoder/layer_1/attention/self/key/BiasAdd', 'bert/encoder/layer_1/attention/self/Reshape_1', 'bert/encoder/layer_1/attention/self/MatMul__320', 'bert/encoder/layer_1/attention/self/MatMul', 'bert/encoder/layer_1/attention/self/Mul', 'bert/encoder/layer_1/attention/self/add', 'bert/encoder/layer_1/attention/self/Softmax', 'bert/encoder/layer_1/attention/self/MatMul_1', 'bert/encoder/layer_1/attention/self/transpose_3', 'bert/encoder/layer_1/attention/self/Reshape_3', 'bert/encoder/layer_1/attention/output/dense/MatMul', 'bert/encoder/layer_1/attention/output/dense/BiasAdd', 'bert/encoder/layer_1/attention/output/add', 'bert/encoder/layer_1/attention/output/LayerNorm/moments/mean', 'bert/encoder/layer_1/attention/output/LayerNorm/moments/SquaredDifference', 'bert/encoder/layer_1/attention/output/LayerNorm/moments/SquaredDifference__323', 'bert/encoder/layer_1/attention/output/LayerNorm/moments/variance', 'bert/encoder/layer_1/attention/output/LayerNorm/batchnorm/add', 'bert/encoder/layer_1/attention/output/LayerNorm/batchnorm/Rsqrt', 'bert/encoder/layer_1/attention/output/LayerNorm/batchnorm/Rsqrt__325', 'bert/encoder/layer_1/attention/output/LayerNorm/batchnorm/mul', 'bert/encoder/layer_1/attention/output/LayerNorm/batchnorm/mul_2', 'bert/encoder/layer_1/attention/output/LayerNorm/batchnorm/sub', 'bert/encoder/layer_1/attention/output/LayerNorm/batchnorm/mul_1', 'bert/encoder/layer_1/attention/output/LayerNorm/batchnorm/add_1', 'bert/encoder/layer_1/intermediate/dense/MatMul', 'bert/encoder/layer_1/intermediate/dense/BiasAdd', 'bert/encoder/layer_1/intermediate/dense/Pow', 'bert/encoder/layer_1/intermediate/dense/mul', 'bert/encoder/layer_1/intermediate/dense/add', 'bert/encoder/layer_1/intermediate/dense/mul_1', 'bert/encoder/layer_1/intermediate/dense/Tanh', 'bert/encoder/layer_1/intermediate/dense/add_1', 'bert/encoder/layer_1/intermediate/dense/mul_2', 'bert/encoder/layer_1/intermediate/dense/mul_3', 'bert/encoder/layer_1/output/dense/MatMul', 'bert/encoder/layer_1/output/dense/BiasAdd', 'bert/encoder/layer_1/output/add', 'bert/encoder/layer_1/output/LayerNorm/moments/mean', 'bert/encoder/layer_1/output/LayerNorm/moments/SquaredDifference', 'bert/encoder/layer_1/output/LayerNorm/moments/SquaredDifference__327', 'bert/encoder/layer_1/output/LayerNorm/moments/variance', 'bert/encoder/layer_1/output/LayerNorm/batchnorm/add', 'bert/encoder/layer_1/output/LayerNorm/batchnorm/Rsqrt', 'bert/encoder/layer_1/output/LayerNorm/batchnorm/Rsqrt__329', 'bert/encoder/layer_1/output/LayerNorm/batchnorm/mul', 'bert/encoder/layer_1/output/LayerNorm/batchnorm/mul_2', 'bert/encoder/layer_1/output/LayerNorm/batchnorm/sub', 'bert/encoder/layer_1/output/LayerNorm/batchnorm/mul_1', 'bert/encoder/layer_1/output/LayerNorm/batchnorm/add_1', 'bert/encoder/layer_2/attention/self/value/MatMul', 'bert/encoder/layer_2/attention/self/value/BiasAdd', 'bert/encoder/layer_2/attention/self/Reshape_2', 'bert/encoder/layer_2/attention/self/transpose_2', 'bert/encoder/layer_2/attention/self/query/MatMul', 'bert/encoder/layer_2/attention/self/query/BiasAdd', 'bert/encoder/layer_2/attention/self/Reshape', 'bert/encoder/layer_2/attention/self/transpose', 'bert/encoder/layer_2/attention/self/key/MatMul', 'bert/encoder/layer_2/attention/self/key/BiasAdd', 'bert/encoder/layer_2/attention/self/Reshape_1', 'bert/encoder/layer_2/attention/self/MatMul__334', 'bert/encoder/layer_2/attention/self/MatMul', 'bert/encoder/layer_2/attention/self/Mul', 'bert/encoder/layer_2/attention/self/add', 'bert/encoder/layer_2/attention/self/Softmax', 'bert/encoder/layer_2/attention/self/MatMul_1', 'bert/encoder/layer_2/attention/self/transpose_3', 'bert/encoder/layer_2/attention/self/Reshape_3', 'bert/encoder/layer_2/attention/output/dense/MatMul', 'bert/encoder/layer_2/attention/output/dense/BiasAdd', 'bert/encoder/layer_2/attention/output/add', 'bert/encoder/layer_2/attention/output/LayerNorm/moments/mean', 'bert/encoder/layer_2/attention/output/LayerNorm/moments/SquaredDifference', 'bert/encoder/layer_2/attention/output/LayerNorm/moments/SquaredDifference__337', 'bert/encoder/layer_2/attention/output/LayerNorm/moments/variance', 'bert/encoder/layer_2/attention/output/LayerNorm/batchnorm/add', 'bert/encoder/layer_2/attention/output/LayerNorm/batchnorm/Rsqrt', 'bert/encoder/layer_2/attention/output/LayerNorm/batchnorm/Rsqrt__339', 'bert/encoder/layer_2/attention/output/LayerNorm/batchnorm/mul', 'bert/encoder/layer_2/attention/output/LayerNorm/batchnorm/mul_2', 'bert/encoder/layer_2/attention/output/LayerNorm/batchnorm/sub', 'bert/encoder/layer_2/attention/output/LayerNorm/batchnorm/mul_1', 'bert/encoder/layer_2/attention/output/LayerNorm/batchnorm/add_1', 'bert/encoder/layer_2/intermediate/dense/MatMul', 'bert/encoder/layer_2/intermediate/dense/BiasAdd', 'bert/encoder/layer_2/intermediate/dense/Pow', 'bert/encoder/layer_2/intermediate/dense/mul', 'bert/encoder/layer_2/intermediate/dense/add', 'bert/encoder/layer_2/intermediate/dense/mul_1', 'bert/encoder/layer_2/intermediate/dense/Tanh', 'bert/encoder/layer_2/intermediate/dense/add_1', 'bert/encoder/layer_2/intermediate/dense/mul_2', 'bert/encoder/layer_2/intermediate/dense/mul_3', 'bert/encoder/layer_2/output/dense/MatMul', 'bert/encoder/layer_2/output/dense/BiasAdd', 'bert/encoder/layer_2/output/add', 'bert/encoder/layer_2/output/LayerNorm/moments/mean', 'bert/encoder/layer_2/output/LayerNorm/moments/SquaredDifference', 'bert/encoder/layer_2/output/LayerNorm/moments/SquaredDifference__341', 'bert/encoder/layer_2/output/LayerNorm/moments/variance', 'bert/encoder/layer_2/output/LayerNorm/batchnorm/add', 'bert/encoder/layer_2/output/LayerNorm/batchnorm/Rsqrt', 'bert/encoder/layer_2/output/LayerNorm/batchnorm/Rsqrt__343', 'bert/encoder/layer_2/output/LayerNorm/batchnorm/mul', 'bert/encoder/layer_2/output/LayerNorm/batchnorm/mul_2', 'bert/encoder/layer_2/output/LayerNorm/batchnorm/sub', 'bert/encoder/layer_2/output/LayerNorm/batchnorm/mul_1', 'bert/encoder/layer_2/output/LayerNorm/batchnorm/add_1', 'bert/encoder/layer_3/attention/self/value/MatMul', 'bert/encoder/layer_3/attention/self/value/BiasAdd', 'bert/encoder/layer_3/attention/self/Reshape_2', 'bert/encoder/layer_3/attention/self/transpose_2', 'bert/encoder/layer_3/attention/self/query/MatMul', 'bert/encoder/layer_3/attention/self/query/BiasAdd', 'bert/encoder/layer_3/attention/self/Reshape', 'bert/encoder/layer_3/attention/self/transpose', 'bert/encoder/layer_3/attention/self/key/MatMul', 'bert/encoder/layer_3/attention/self/key/BiasAdd', 'bert/encoder/layer_3/attention/self/Reshape_1', 'bert/encoder/layer_3/attention/self/MatMul__348', 'bert/encoder/layer_3/attention/self/MatMul', 'bert/encoder/layer_3/attention/self/Mul', 'bert/encoder/layer_3/attention/self/add', 'bert/encoder/layer_3/attention/self/Softmax', 'bert/encoder/layer_3/attention/self/MatMul_1', 'bert/encoder/layer_3/attention/self/transpose_3', 'bert/encoder/layer_3/attention/self/Reshape_3', 'bert/encoder/layer_3/attention/output/dense/MatMul', 'bert/encoder/layer_3/attention/output/dense/BiasAdd', 'bert/encoder/layer_3/attention/output/add', 'bert/encoder/layer_3/attention/output/LayerNorm/moments/mean', 'bert/encoder/layer_3/attention/output/LayerNorm/moments/SquaredDifference', 'bert/encoder/layer_3/attention/output/LayerNorm/moments/SquaredDifference__351', 'bert/encoder/layer_3/attention/output/LayerNorm/moments/variance', 'bert/encoder/layer_3/attention/output/LayerNorm/batchnorm/add', 'bert/encoder/layer_3/attention/output/LayerNorm/batchnorm/Rsqrt', 'bert/encoder/layer_3/attention/output/LayerNorm/batchnorm/Rsqrt__353', 'bert/encoder/layer_3/attention/output/LayerNorm/batchnorm/mul', 'bert/encoder/layer_3/attention/output/LayerNorm/batchnorm/mul_2', 'bert/encoder/layer_3/attention/output/LayerNorm/batchnorm/sub', 'bert/encoder/layer_3/attention/output/LayerNorm/batchnorm/mul_1', 'bert/encoder/layer_3/attention/output/LayerNorm/batchnorm/add_1', 'bert/encoder/layer_3/intermediate/dense/MatMul', 'bert/encoder/layer_3/intermediate/dense/BiasAdd', 'bert/encoder/layer_3/intermediate/dense/Pow', 'bert/encoder/layer_3/intermediate/dense/mul', 'bert/encoder/layer_3/intermediate/dense/add', 'bert/encoder/layer_3/intermediate/dense/mul_1', 'bert/encoder/layer_3/intermediate/dense/Tanh', 'bert/encoder/layer_3/intermediate/dense/add_1', 'bert/encoder/layer_3/intermediate/dense/mul_2', 'bert/encoder/layer_3/intermediate/dense/mul_3', 'bert/encoder/layer_3/output/dense/MatMul', 'bert/encoder/layer_3/output/dense/BiasAdd', 'bert/encoder/layer_3/output/add', 'bert/encoder/layer_3/output/LayerNorm/moments/mean', 'bert/encoder/layer_3/output/LayerNorm/moments/SquaredDifference', 'bert/encoder/layer_3/output/LayerNorm/moments/SquaredDifference__355', 'bert/encoder/layer_3/output/LayerNorm/moments/variance', 'bert/encoder/layer_3/output/LayerNorm/batchnorm/add', 'bert/encoder/layer_3/output/LayerNorm/batchnorm/Rsqrt', 'bert/encoder/layer_3/output/LayerNorm/batchnorm/Rsqrt__357', 'bert/encoder/layer_3/output/LayerNorm/batchnorm/mul', 'bert/encoder/layer_3/output/LayerNorm/batchnorm/mul_2', 'bert/encoder/layer_3/output/LayerNorm/batchnorm/sub', 'bert/encoder/layer_3/output/LayerNorm/batchnorm/mul_1', 'bert/encoder/layer_3/output/LayerNorm/batchnorm/add_1', 'bert/encoder/layer_4/attention/self/value/MatMul', 'bert/encoder/layer_4/attention/self/value/BiasAdd', 'bert/encoder/layer_4/attention/self/Reshape_2', 'bert/encoder/layer_4/attention/self/transpose_2', 'bert/encoder/layer_4/attention/self/query/MatMul', 'bert/encoder/layer_4/attention/self/query/BiasAdd', 'bert/encoder/layer_4/attention/self/Reshape', 'bert/encoder/layer_4/attention/self/transpose', 'bert/encoder/layer_4/attention/self/key/MatMul', 'bert/encoder/layer_4/attention/self/key/BiasAdd', 'bert/encoder/layer_4/attention/self/Reshape_1', 'bert/encoder/layer_4/attention/self/MatMul__362', 'bert/encoder/layer_4/attention/self/MatMul', 'bert/encoder/layer_4/attention/self/Mul', 'bert/encoder/layer_4/attention/self/add', 'bert/encoder/layer_4/attention/self/Softmax', 'bert/encoder/layer_4/attention/self/MatMul_1', 'bert/encoder/layer_4/attention/self/transpose_3', 'bert/encoder/layer_4/attention/self/Reshape_3', 'bert/encoder/layer_4/attention/output/dense/MatMul', 'bert/encoder/layer_4/attention/output/dense/BiasAdd', 'bert/encoder/layer_4/attention/output/add', 'bert/encoder/layer_4/attention/output/LayerNorm/moments/mean', 'bert/encoder/layer_4/attention/output/LayerNorm/moments/SquaredDifference', 'bert/encoder/layer_4/attention/output/LayerNorm/moments/SquaredDifference__365', 'bert/encoder/layer_4/attention/output/LayerNorm/moments/variance', 'bert/encoder/layer_4/attention/output/LayerNorm/batchnorm/add', 'bert/encoder/layer_4/attention/output/LayerNorm/batchnorm/Rsqrt', 'bert/encoder/layer_4/attention/output/LayerNorm/batchnorm/Rsqrt__367', 'bert/encoder/layer_4/attention/output/LayerNorm/batchnorm/mul', 'bert/encoder/layer_4/attention/output/LayerNorm/batchnorm/mul_2', 'bert/encoder/layer_4/attention/output/LayerNorm/batchnorm/sub', 'bert/encoder/layer_4/attention/output/LayerNorm/batchnorm/mul_1', 'bert/encoder/layer_4/attention/output/LayerNorm/batchnorm/add_1', 'bert/encoder/layer_4/intermediate/dense/MatMul', 'bert/encoder/layer_4/intermediate/dense/BiasAdd', 'bert/encoder/layer_4/intermediate/dense/Pow', 'bert/encoder/layer_4/intermediate/dense/mul', 'bert/encoder/layer_4/intermediate/dense/add', 'bert/encoder/layer_4/intermediate/dense/mul_1', 'bert/encoder/layer_4/intermediate/dense/Tanh', 'bert/encoder/layer_4/intermediate/dense/add_1', 'bert/encoder/layer_4/intermediate/dense/mul_2', 'bert/encoder/layer_4/intermediate/dense/mul_3', 'bert/encoder/layer_4/output/dense/MatMul', 'bert/encoder/layer_4/output/dense/BiasAdd', 'bert/encoder/layer_4/output/add', 'bert/encoder/layer_4/output/LayerNorm/moments/mean', 'bert/encoder/layer_4/output/LayerNorm/moments/SquaredDifference', 'bert/encoder/layer_4/output/LayerNorm/moments/SquaredDifference__369', 'bert/encoder/layer_4/output/LayerNorm/moments/variance', 'bert/encoder/layer_4/output/LayerNorm/batchnorm/add', 'bert/encoder/layer_4/output/LayerNorm/batchnorm/Rsqrt', 'bert/encoder/layer_4/output/LayerNorm/batchnorm/Rsqrt__371', 'bert/encoder/layer_4/output/LayerNorm/batchnorm/mul', 'bert/encoder/layer_4/output/LayerNorm/batchnorm/mul_2', 'bert/encoder/layer_4/output/LayerNorm/batchnorm/sub', 'bert/encoder/layer_4/output/LayerNorm/batchnorm/mul_1', 'bert/encoder/layer_4/output/LayerNorm/batchnorm/add_1', 'bert/encoder/layer_5/attention/self/value/MatMul', 'bert/encoder/layer_5/attention/self/value/BiasAdd', 'bert/encoder/layer_5/attention/self/Reshape_2', 'bert/encoder/layer_5/attention/self/transpose_2', 'bert/encoder/layer_5/attention/self/query/MatMul', 'bert/encoder/layer_5/attention/self/query/BiasAdd', 'bert/encoder/layer_5/attention/self/Reshape', 'bert/encoder/layer_5/attention/self/transpose', 'bert/encoder/layer_5/attention/self/key/MatMul', 'bert/encoder/layer_5/attention/self/key/BiasAdd', 'bert/encoder/layer_5/attention/self/Reshape_1', 'bert/encoder/layer_5/attention/self/MatMul__376', 'bert/encoder/layer_5/attention/self/MatMul', 'bert/encoder/layer_5/attention/self/Mul', 'bert/encoder/layer_5/attention/self/add', 'bert/encoder/layer_5/attention/self/Softmax', 'bert/encoder/layer_5/attention/self/MatMul_1', 'bert/encoder/layer_5/attention/self/transpose_3', 'bert/encoder/layer_5/attention/self/Reshape_3', 'bert/encoder/layer_5/attention/output/dense/MatMul', 'bert/encoder/layer_5/attention/output/dense/BiasAdd', 'bert/encoder/layer_5/attention/output/add', 'bert/encoder/layer_5/attention/output/LayerNorm/moments/mean', 'bert/encoder/layer_5/attention/output/LayerNorm/moments/SquaredDifference', 'bert/encoder/layer_5/attention/output/LayerNorm/moments/SquaredDifference__379', 'bert/encoder/layer_5/attention/output/LayerNorm/moments/variance', 'bert/encoder/layer_5/attention/output/LayerNorm/batchnorm/add', 'bert/encoder/layer_5/attention/output/LayerNorm/batchnorm/Rsqrt', 'bert/encoder/layer_5/attention/output/LayerNorm/batchnorm/Rsqrt__381', 'bert/encoder/layer_5/attention/output/LayerNorm/batchnorm/mul', 'bert/encoder/layer_5/attention/output/LayerNorm/batchnorm/mul_2', 'bert/encoder/layer_5/attention/output/LayerNorm/batchnorm/sub', 'bert/encoder/layer_5/attention/output/LayerNorm/batchnorm/mul_1', 'bert/encoder/layer_5/attention/output/LayerNorm/batchnorm/add_1', 'bert/encoder/layer_5/intermediate/dense/MatMul', 'bert/encoder/layer_5/intermediate/dense/BiasAdd', 'bert/encoder/layer_5/intermediate/dense/Pow', 'bert/encoder/layer_5/intermediate/dense/mul', 'bert/encoder/layer_5/intermediate/dense/add', 'bert/encoder/layer_5/intermediate/dense/mul_1', 'bert/encoder/layer_5/intermediate/dense/Tanh', 'bert/encoder/layer_5/intermediate/dense/add_1', 'bert/encoder/layer_5/intermediate/dense/mul_2', 'bert/encoder/layer_5/intermediate/dense/mul_3', 'bert/encoder/layer_5/output/dense/MatMul', 'bert/encoder/layer_5/output/dense/BiasAdd', 'bert/encoder/layer_5/output/add', 'bert/encoder/layer_5/output/LayerNorm/moments/mean', 'bert/encoder/layer_5/output/LayerNorm/moments/SquaredDifference', 'bert/encoder/layer_5/output/LayerNorm/moments/SquaredDifference__383', 'bert/encoder/layer_5/output/LayerNorm/moments/variance', 'bert/encoder/layer_5/output/LayerNorm/batchnorm/add', 'bert/encoder/layer_5/output/LayerNorm/batchnorm/Rsqrt', 'bert/encoder/layer_5/output/LayerNorm/batchnorm/Rsqrt__385', 'bert/encoder/layer_5/output/LayerNorm/batchnorm/mul', 'bert/encoder/layer_5/output/LayerNorm/batchnorm/mul_2', 'bert/encoder/layer_5/output/LayerNorm/batchnorm/sub', 'bert/encoder/layer_5/output/LayerNorm/batchnorm/mul_1', 'bert/encoder/layer_5/output/LayerNorm/batchnorm/add_1', 'bert/encoder/layer_6/attention/self/value/MatMul', 'bert/encoder/layer_6/attention/self/value/BiasAdd', 'bert/encoder/layer_6/attention/self/Reshape_2', 'bert/encoder/layer_6/attention/self/transpose_2', 'bert/encoder/layer_6/attention/self/query/MatMul', 'bert/encoder/layer_6/attention/self/query/BiasAdd', 'bert/encoder/layer_6/attention/self/Reshape', 'bert/encoder/layer_6/attention/self/transpose', 'bert/encoder/layer_6/attention/self/key/MatMul', 'bert/encoder/layer_6/attention/self/key/BiasAdd', 'bert/encoder/layer_6/attention/self/Reshape_1', 'bert/encoder/layer_6/attention/self/MatMul__390', 'bert/encoder/layer_6/attention/self/MatMul', 'bert/encoder/layer_6/attention/self/Mul', 'bert/encoder/layer_6/attention/self/add', 'bert/encoder/layer_6/attention/self/Softmax', 'bert/encoder/layer_6/attention/self/MatMul_1', 'bert/encoder/layer_6/attention/self/transpose_3', 'bert/encoder/layer_6/attention/self/Reshape_3', 'bert/encoder/layer_6/attention/output/dense/MatMul', 'bert/encoder/layer_6/attention/output/dense/BiasAdd', 'bert/encoder/layer_6/attention/output/add', 'bert/encoder/layer_6/attention/output/LayerNorm/moments/mean', 'bert/encoder/layer_6/attention/output/LayerNorm/moments/SquaredDifference', 'bert/encoder/layer_6/attention/output/LayerNorm/moments/SquaredDifference__393', 'bert/encoder/layer_6/attention/output/LayerNorm/moments/variance', 'bert/encoder/layer_6/attention/output/LayerNorm/batchnorm/add', 'bert/encoder/layer_6/attention/output/LayerNorm/batchnorm/Rsqrt', 'bert/encoder/layer_6/attention/output/LayerNorm/batchnorm/Rsqrt__395', 'bert/encoder/layer_6/attention/output/LayerNorm/batchnorm/mul', 'bert/encoder/layer_6/attention/output/LayerNorm/batchnorm/mul_2', 'bert/encoder/layer_6/attention/output/LayerNorm/batchnorm/sub', 'bert/encoder/layer_6/attention/output/LayerNorm/batchnorm/mul_1', 'bert/encoder/layer_6/attention/output/LayerNorm/batchnorm/add_1', 'bert/encoder/layer_6/intermediate/dense/MatMul', 'bert/encoder/layer_6/intermediate/dense/BiasAdd', 'bert/encoder/layer_6/intermediate/dense/Pow', 'bert/encoder/layer_6/intermediate/dense/mul', 'bert/encoder/layer_6/intermediate/dense/add', 'bert/encoder/layer_6/intermediate/dense/mul_1', 'bert/encoder/layer_6/intermediate/dense/Tanh', 'bert/encoder/layer_6/intermediate/dense/add_1', 'bert/encoder/layer_6/intermediate/dense/mul_2', 'bert/encoder/layer_6/intermediate/dense/mul_3', 'bert/encoder/layer_6/output/dense/MatMul', 'bert/encoder/layer_6/output/dense/BiasAdd', 'bert/encoder/layer_6/output/add', 'bert/encoder/layer_6/output/LayerNorm/moments/mean', 'bert/encoder/layer_6/output/LayerNorm/moments/SquaredDifference', 'bert/encoder/layer_6/output/LayerNorm/moments/SquaredDifference__397', 'bert/encoder/layer_6/output/LayerNorm/moments/variance', 'bert/encoder/layer_6/output/LayerNorm/batchnorm/add', 'bert/encoder/layer_6/output/LayerNorm/batchnorm/Rsqrt', 'bert/encoder/layer_6/output/LayerNorm/batchnorm/Rsqrt__399', 'bert/encoder/layer_6/output/LayerNorm/batchnorm/mul', 'bert/encoder/layer_6/output/LayerNorm/batchnorm/mul_2', 'bert/encoder/layer_6/output/LayerNorm/batchnorm/sub', 'bert/encoder/layer_6/output/LayerNorm/batchnorm/mul_1', 'bert/encoder/layer_6/output/LayerNorm/batchnorm/add_1', 'bert/encoder/layer_7/attention/self/value/MatMul', 'bert/encoder/layer_7/attention/self/value/BiasAdd', 'bert/encoder/layer_7/attention/self/Reshape_2', 'bert/encoder/layer_7/attention/self/transpose_2', 'bert/encoder/layer_7/attention/self/query/MatMul', 'bert/encoder/layer_7/attention/self/query/BiasAdd', 'bert/encoder/layer_7/attention/self/Reshape', 'bert/encoder/layer_7/attention/self/transpose', 'bert/encoder/layer_7/attention/self/key/MatMul', 'bert/encoder/layer_7/attention/self/key/BiasAdd', 'bert/encoder/layer_7/attention/self/Reshape_1', 'bert/encoder/layer_7/attention/self/MatMul__404', 'bert/encoder/layer_7/attention/self/MatMul', 'bert/encoder/layer_7/attention/self/Mul', 'bert/encoder/layer_7/attention/self/add', 'bert/encoder/layer_7/attention/self/Softmax', 'bert/encoder/layer_7/attention/self/MatMul_1', 'bert/encoder/layer_7/attention/self/transpose_3', 'bert/encoder/layer_7/attention/self/Reshape_3', 'bert/encoder/layer_7/attention/output/dense/MatMul', 'bert/encoder/layer_7/attention/output/dense/BiasAdd', 'bert/encoder/layer_7/attention/output/add', 'bert/encoder/layer_7/attention/output/LayerNorm/moments/mean', 'bert/encoder/layer_7/attention/output/LayerNorm/moments/SquaredDifference', 'bert/encoder/layer_7/attention/output/LayerNorm/moments/SquaredDifference__407', 'bert/encoder/layer_7/attention/output/LayerNorm/moments/variance', 'bert/encoder/layer_7/attention/output/LayerNorm/batchnorm/add', 'bert/encoder/layer_7/attention/output/LayerNorm/batchnorm/Rsqrt', 'bert/encoder/layer_7/attention/output/LayerNorm/batchnorm/Rsqrt__409', 'bert/encoder/layer_7/attention/output/LayerNorm/batchnorm/mul', 'bert/encoder/layer_7/attention/output/LayerNorm/batchnorm/mul_2', 'bert/encoder/layer_7/attention/output/LayerNorm/batchnorm/sub', 'bert/encoder/layer_7/attention/output/LayerNorm/batchnorm/mul_1', 'bert/encoder/layer_7/attention/output/LayerNorm/batchnorm/add_1', 'bert/encoder/layer_7/intermediate/dense/MatMul', 'bert/encoder/layer_7/intermediate/dense/BiasAdd', 'bert/encoder/layer_7/intermediate/dense/Pow', 'bert/encoder/layer_7/intermediate/dense/mul', 'bert/encoder/layer_7/intermediate/dense/add', 'bert/encoder/layer_7/intermediate/dense/mul_1', 'bert/encoder/layer_7/intermediate/dense/Tanh', 'bert/encoder/layer_7/intermediate/dense/add_1', 'bert/encoder/layer_7/intermediate/dense/mul_2', 'bert/encoder/layer_7/intermediate/dense/mul_3', 'bert/encoder/layer_7/output/dense/MatMul', 'bert/encoder/layer_7/output/dense/BiasAdd', 'bert/encoder/layer_7/output/add', 'bert/encoder/layer_7/output/LayerNorm/moments/mean', 'bert/encoder/layer_7/output/LayerNorm/moments/SquaredDifference', 'bert/encoder/layer_7/output/LayerNorm/moments/SquaredDifference__411', 'bert/encoder/layer_7/output/LayerNorm/moments/variance', 'bert/encoder/layer_7/output/LayerNorm/batchnorm/add', 'bert/encoder/layer_7/output/LayerNorm/batchnorm/Rsqrt', 'bert/encoder/layer_7/output/LayerNorm/batchnorm/Rsqrt__413', 'bert/encoder/layer_7/output/LayerNorm/batchnorm/mul', 'bert/encoder/layer_7/output/LayerNorm/batchnorm/mul_2', 'bert/encoder/layer_7/output/LayerNorm/batchnorm/sub', 'bert/encoder/layer_7/output/LayerNorm/batchnorm/mul_1', 'bert/encoder/layer_7/output/LayerNorm/batchnorm/add_1', 'bert/encoder/layer_8/attention/self/value/MatMul', 'bert/encoder/layer_8/attention/self/value/BiasAdd', 'bert/encoder/layer_8/attention/self/Reshape_2', 'bert/encoder/layer_8/attention/self/transpose_2', 'bert/encoder/layer_8/attention/self/query/MatMul', 'bert/encoder/layer_8/attention/self/query/BiasAdd', 'bert/encoder/layer_8/attention/self/Reshape', 'bert/encoder/layer_8/attention/self/transpose', 'bert/encoder/layer_8/attention/self/key/MatMul', 'bert/encoder/layer_8/attention/self/key/BiasAdd', 'bert/encoder/layer_8/attention/self/Reshape_1', 'bert/encoder/layer_8/attention/self/MatMul__418', 'bert/encoder/layer_8/attention/self/MatMul', 'bert/encoder/layer_8/attention/self/Mul', 'bert/encoder/layer_8/attention/self/add', 'bert/encoder/layer_8/attention/self/Softmax', 'bert/encoder/layer_8/attention/self/MatMul_1', 'bert/encoder/layer_8/attention/self/transpose_3', 'bert/encoder/layer_8/attention/self/Reshape_3', 'bert/encoder/layer_8/attention/output/dense/MatMul', 'bert/encoder/layer_8/attention/output/dense/BiasAdd', 'bert/encoder/layer_8/attention/output/add', 'bert/encoder/layer_8/attention/output/LayerNorm/moments/mean', 'bert/encoder/layer_8/attention/output/LayerNorm/moments/SquaredDifference', 'bert/encoder/layer_8/attention/output/LayerNorm/moments/SquaredDifference__421', 'bert/encoder/layer_8/attention/output/LayerNorm/moments/variance', 'bert/encoder/layer_8/attention/output/LayerNorm/batchnorm/add', 'bert/encoder/layer_8/attention/output/LayerNorm/batchnorm/Rsqrt', 'bert/encoder/layer_8/attention/output/LayerNorm/batchnorm/Rsqrt__423', 'bert/encoder/layer_8/attention/output/LayerNorm/batchnorm/mul', 'bert/encoder/layer_8/attention/output/LayerNorm/batchnorm/mul_2', 'bert/encoder/layer_8/attention/output/LayerNorm/batchnorm/sub', 'bert/encoder/layer_8/attention/output/LayerNorm/batchnorm/mul_1', 'bert/encoder/layer_8/attention/output/LayerNorm/batchnorm/add_1', 'bert/encoder/layer_8/intermediate/dense/MatMul', 'bert/encoder/layer_8/intermediate/dense/BiasAdd', 'bert/encoder/layer_8/intermediate/dense/Pow', 'bert/encoder/layer_8/intermediate/dense/mul', 'bert/encoder/layer_8/intermediate/dense/add', 'bert/encoder/layer_8/intermediate/dense/mul_1', 'bert/encoder/layer_8/intermediate/dense/Tanh', 'bert/encoder/layer_8/intermediate/dense/add_1', 'bert/encoder/layer_8/intermediate/dense/mul_2', 'bert/encoder/layer_8/intermediate/dense/mul_3', 'bert/encoder/layer_8/output/dense/MatMul', 'bert/encoder/layer_8/output/dense/BiasAdd', 'bert/encoder/layer_8/output/add', 'bert/encoder/layer_8/output/LayerNorm/moments/mean', 'bert/encoder/layer_8/output/LayerNorm/moments/SquaredDifference', 'bert/encoder/layer_8/output/LayerNorm/moments/SquaredDifference__425', 'bert/encoder/layer_8/output/LayerNorm/moments/variance', 'bert/encoder/layer_8/output/LayerNorm/batchnorm/add', 'bert/encoder/layer_8/output/LayerNorm/batchnorm/Rsqrt', 'bert/encoder/layer_8/output/LayerNorm/batchnorm/Rsqrt__427', 'bert/encoder/layer_8/output/LayerNorm/batchnorm/mul', 'bert/encoder/layer_8/output/LayerNorm/batchnorm/mul_2', 'bert/encoder/layer_8/output/LayerNorm/batchnorm/sub', 'bert/encoder/layer_8/output/LayerNorm/batchnorm/mul_1', 'bert/encoder/layer_8/output/LayerNorm/batchnorm/add_1', 'bert/encoder/layer_9/attention/self/value/MatMul', 'bert/encoder/layer_9/attention/self/value/BiasAdd', 'bert/encoder/layer_9/attention/self/Reshape_2', 'bert/encoder/layer_9/attention/self/transpose_2', 'bert/encoder/layer_9/attention/self/query/MatMul', 'bert/encoder/layer_9/attention/self/query/BiasAdd', 'bert/encoder/layer_9/attention/self/Reshape', 'bert/encoder/layer_9/attention/self/transpose', 'bert/encoder/layer_9/attention/self/key/MatMul', 'bert/encoder/layer_9/attention/self/key/BiasAdd', 'bert/encoder/layer_9/attention/self/Reshape_1', 'bert/encoder/layer_9/attention/self/MatMul__432', 'bert/encoder/layer_9/attention/self/MatMul', 'bert/encoder/layer_9/attention/self/Mul', 'bert/encoder/layer_9/attention/self/add', 'bert/encoder/layer_9/attention/self/Softmax', 'bert/encoder/layer_9/attention/self/MatMul_1', 'bert/encoder/layer_9/attention/self/transpose_3', 'bert/encoder/layer_9/attention/self/Reshape_3', 'bert/encoder/layer_9/attention/output/dense/MatMul', 'bert/encoder/layer_9/attention/output/dense/BiasAdd', 'bert/encoder/layer_9/attention/output/add', 'bert/encoder/layer_9/attention/output/LayerNorm/moments/mean', 'bert/encoder/layer_9/attention/output/LayerNorm/moments/SquaredDifference', 'bert/encoder/layer_9/attention/output/LayerNorm/moments/SquaredDifference__435', 'bert/encoder/layer_9/attention/output/LayerNorm/moments/variance', 'bert/encoder/layer_9/attention/output/LayerNorm/batchnorm/add', 'bert/encoder/layer_9/attention/output/LayerNorm/batchnorm/Rsqrt', 'bert/encoder/layer_9/attention/output/LayerNorm/batchnorm/Rsqrt__437', 'bert/encoder/layer_9/attention/output/LayerNorm/batchnorm/mul', 'bert/encoder/layer_9/attention/output/LayerNorm/batchnorm/mul_2', 'bert/encoder/layer_9/attention/output/LayerNorm/batchnorm/sub', 'bert/encoder/layer_9/attention/output/LayerNorm/batchnorm/mul_1', 'bert/encoder/layer_9/attention/output/LayerNorm/batchnorm/add_1', 'bert/encoder/layer_9/intermediate/dense/MatMul', 'bert/encoder/layer_9/intermediate/dense/BiasAdd', 'bert/encoder/layer_9/intermediate/dense/Pow', 'bert/encoder/layer_9/intermediate/dense/mul', 'bert/encoder/layer_9/intermediate/dense/add', 'bert/encoder/layer_9/intermediate/dense/mul_1', 'bert/encoder/layer_9/intermediate/dense/Tanh', 'bert/encoder/layer_9/intermediate/dense/add_1', 'bert/encoder/layer_9/intermediate/dense/mul_2', 'bert/encoder/layer_9/intermediate/dense/mul_3', 'bert/encoder/layer_9/output/dense/MatMul', 'bert/encoder/layer_9/output/dense/BiasAdd', 'bert/encoder/layer_9/output/add', 'bert/encoder/layer_9/output/LayerNorm/moments/mean', 'bert/encoder/layer_9/output/LayerNorm/moments/SquaredDifference', 'bert/encoder/layer_9/output/LayerNorm/moments/SquaredDifference__439', 'bert/encoder/layer_9/output/LayerNorm/moments/variance', 'bert/encoder/layer_9/output/LayerNorm/batchnorm/add', 'bert/encoder/layer_9/output/LayerNorm/batchnorm/Rsqrt', 'bert/encoder/layer_9/output/LayerNorm/batchnorm/Rsqrt__441', 'bert/encoder/layer_9/output/LayerNorm/batchnorm/mul', 'bert/encoder/layer_9/output/LayerNorm/batchnorm/mul_2', 'bert/encoder/layer_9/output/LayerNorm/batchnorm/sub', 'bert/encoder/layer_9/output/LayerNorm/batchnorm/mul_1', 'bert/encoder/layer_9/output/LayerNorm/batchnorm/add_1', 'bert/encoder/layer_10/attention/self/value/MatMul', 'bert/encoder/layer_10/attention/self/value/BiasAdd', 'bert/encoder/layer_10/attention/self/Reshape_2', 'bert/encoder/layer_10/attention/self/transpose_2', 'bert/encoder/layer_10/attention/self/query/MatMul', 'bert/encoder/layer_10/attention/self/query/BiasAdd', 'bert/encoder/layer_10/attention/self/Reshape', 'bert/encoder/layer_10/attention/self/transpose', 'bert/encoder/layer_10/attention/self/key/MatMul', 'bert/encoder/layer_10/attention/self/key/BiasAdd', 'bert/encoder/layer_10/attention/self/Reshape_1', 'bert/encoder/layer_10/attention/self/MatMul__446', 'bert/encoder/layer_10/attention/self/MatMul', 'bert/encoder/layer_10/attention/self/Mul', 'bert/encoder/layer_10/attention/self/add', 'bert/encoder/layer_10/attention/self/Softmax', 'bert/encoder/layer_10/attention/self/MatMul_1', 'bert/encoder/layer_10/attention/self/transpose_3', 'bert/encoder/layer_10/attention/self/Reshape_3', 'bert/encoder/layer_10/attention/output/dense/MatMul', 'bert/encoder/layer_10/attention/output/dense/BiasAdd', 'bert/encoder/layer_10/attention/output/add', 'bert/encoder/layer_10/attention/output/LayerNorm/moments/mean', 'bert/encoder/layer_10/attention/output/LayerNorm/moments/SquaredDifference', 'bert/encoder/layer_10/attention/output/LayerNorm/moments/SquaredDifference__449', 'bert/encoder/layer_10/attention/output/LayerNorm/moments/variance', 'bert/encoder/layer_10/attention/output/LayerNorm/batchnorm/add', 'bert/encoder/layer_10/attention/output/LayerNorm/batchnorm/Rsqrt', 'bert/encoder/layer_10/attention/output/LayerNorm/batchnorm/Rsqrt__451', 'bert/encoder/layer_10/attention/output/LayerNorm/batchnorm/mul', 'bert/encoder/layer_10/attention/output/LayerNorm/batchnorm/mul_2', 'bert/encoder/layer_10/attention/output/LayerNorm/batchnorm/sub', 'bert/encoder/layer_10/attention/output/LayerNorm/batchnorm/mul_1', 'bert/encoder/layer_10/attention/output/LayerNorm/batchnorm/add_1', 'bert/encoder/layer_10/intermediate/dense/MatMul', 'bert/encoder/layer_10/intermediate/dense/BiasAdd', 'bert/encoder/layer_10/intermediate/dense/Pow', 'bert/encoder/layer_10/intermediate/dense/mul', 'bert/encoder/layer_10/intermediate/dense/add', 'bert/encoder/layer_10/intermediate/dense/mul_1', 'bert/encoder/layer_10/intermediate/dense/Tanh', 'bert/encoder/layer_10/intermediate/dense/add_1', 'bert/encoder/layer_10/intermediate/dense/mul_2', 'bert/encoder/layer_10/intermediate/dense/mul_3', 'bert/encoder/layer_10/output/dense/MatMul', 'bert/encoder/layer_10/output/dense/BiasAdd', 'bert/encoder/layer_10/output/add', 'bert/encoder/layer_10/output/LayerNorm/moments/mean', 'bert/encoder/layer_10/output/LayerNorm/moments/SquaredDifference', 'bert/encoder/layer_10/output/LayerNorm/moments/SquaredDifference__453', 'bert/encoder/layer_10/output/LayerNorm/moments/variance', 'bert/encoder/layer_10/output/LayerNorm/batchnorm/add', 'bert/encoder/layer_10/output/LayerNorm/batchnorm/Rsqrt', 'bert/encoder/layer_10/output/LayerNorm/batchnorm/Rsqrt__455', 'bert/encoder/layer_10/output/LayerNorm/batchnorm/mul', 'bert/encoder/layer_10/output/LayerNorm/batchnorm/mul_2', 'bert/encoder/layer_10/output/LayerNorm/batchnorm/sub', 'bert/encoder/layer_10/output/LayerNorm/batchnorm/mul_1', 'bert/encoder/layer_10/output/LayerNorm/batchnorm/add_1', 'bert/encoder/layer_11/attention/self/value/MatMul', 'bert/encoder/layer_11/attention/self/value/BiasAdd', 'bert/encoder/layer_11/attention/self/Reshape_2', 'bert/encoder/layer_11/attention/self/transpose_2', 'bert/encoder/layer_11/attention/self/query/MatMul', 'bert/encoder/layer_11/attention/self/query/BiasAdd', 'bert/encoder/layer_11/attention/self/Reshape', 'bert/encoder/layer_11/attention/self/transpose', 'bert/encoder/layer_11/attention/self/key/MatMul', 'bert/encoder/layer_11/attention/self/key/BiasAdd', 'bert/encoder/layer_11/attention/self/Reshape_1', 'bert/encoder/layer_11/attention/self/MatMul__460', 'bert/encoder/layer_11/attention/self/MatMul', 'bert/encoder/layer_11/attention/self/Mul', 'bert/encoder/layer_11/attention/self/add', 'bert/encoder/layer_11/attention/self/Softmax', 'bert/encoder/layer_11/attention/self/MatMul_1', 'bert/encoder/layer_11/attention/self/transpose_3', 'bert/encoder/layer_11/attention/self/Reshape_3', 'bert/encoder/layer_11/attention/output/dense/MatMul', 'bert/encoder/layer_11/attention/output/dense/BiasAdd', 'bert/encoder/layer_11/attention/output/add', 'bert/encoder/layer_11/attention/output/LayerNorm/moments/mean', 'bert/encoder/layer_11/attention/output/LayerNorm/moments/SquaredDifference', 'bert/encoder/layer_11/attention/output/LayerNorm/moments/SquaredDifference__463', 'bert/encoder/layer_11/attention/output/LayerNorm/moments/variance', 'bert/encoder/layer_11/attention/output/LayerNorm/batchnorm/add', 'bert/encoder/layer_11/attention/output/LayerNorm/batchnorm/Rsqrt', 'bert/encoder/layer_11/attention/output/LayerNorm/batchnorm/Rsqrt__465', 'bert/encoder/layer_11/attention/output/LayerNorm/batchnorm/mul', 'bert/encoder/layer_11/attention/output/LayerNorm/batchnorm/mul_2', 'bert/encoder/layer_11/attention/output/LayerNorm/batchnorm/sub', 'bert/encoder/layer_11/attention/output/LayerNorm/batchnorm/mul_1', 'bert/encoder/layer_11/attention/output/LayerNorm/batchnorm/add_1', 'bert/encoder/layer_11/intermediate/dense/MatMul', 'bert/encoder/layer_11/intermediate/dense/BiasAdd', 'bert/encoder/layer_11/intermediate/dense/Pow', 'bert/encoder/layer_11/intermediate/dense/mul', 'bert/encoder/layer_11/intermediate/dense/add', 'bert/encoder/layer_11/intermediate/dense/mul_1', 'bert/encoder/layer_11/intermediate/dense/Tanh', 'bert/encoder/layer_11/intermediate/dense/add_1', 'bert/encoder/layer_11/intermediate/dense/mul_2', 'bert/encoder/layer_11/intermediate/dense/mul_3', 'bert/encoder/layer_11/output/dense/MatMul', 'bert/encoder/layer_11/output/dense/BiasAdd', 'bert/encoder/layer_11/output/add', 'bert/encoder/layer_11/output/LayerNorm/moments/mean', 'bert/encoder/layer_11/output/LayerNorm/moments/SquaredDifference', 'bert/encoder/layer_11/output/LayerNorm/moments/SquaredDifference__467', 'bert/encoder/layer_11/output/LayerNorm/moments/variance', 'bert/encoder/layer_11/output/LayerNorm/batchnorm/add', 'bert/encoder/layer_11/output/LayerNorm/batchnorm/Rsqrt', 'bert/encoder/layer_11/output/LayerNorm/batchnorm/Rsqrt__469', 'bert/encoder/layer_11/output/LayerNorm/batchnorm/mul', 'bert/encoder/layer_11/output/LayerNorm/batchnorm/mul_2', 'bert/encoder/layer_11/output/LayerNorm/batchnorm/sub', 'bert/encoder/layer_11/output/LayerNorm/batchnorm/mul_1', 'bert/encoder/layer_11/output/LayerNorm/batchnorm/add_1', 'MatMul', 'BiasAdd', 'Reshape_1', 'transpose', 'unstack', 'unstack__490', 'unstack__488'] Generating '/tmp/nsys-report-f0a2.qdstrm' [1/8] [0% ] nsys-report-571e.nsys-rep [1/8] [0% ] nsys-report-571e.nsys-rep [1/8] [5% ] nsys-report-571e.nsys-rep [1/8] [8% ] nsys-report-571e.nsys-rep [1/8] [9% ] nsys-report-571e.nsys-rep [1/8] [0% ] nsys-report-571e.nsys-rep [1/8] [=17% ] nsys-report-571e.nsys-rep [1/8] [=16% ] nsys-report-571e.nsys-rep [1/8] [=17% ] nsys-report-571e.nsys-rep [1/8] [==18% ] nsys-report-571e.nsys-rep [1/8] [===22% ] nsys-report-571e.nsys-rep [1/8] [===23% ] nsys-report-571e.nsys-rep [1/8] [===24% ] nsys-report-571e.nsys-rep [1/8] [====25% ] nsys-report-571e.nsys-rep [1/8] [====26% ] nsys-report-571e.nsys-rep [1/8] [====27% ] nsys-report-571e.nsys-rep [1/8] [====28% ] nsys-report-571e.nsys-rep [1/8] [=====29% ] nsys-report-571e.nsys-rep [1/8] [=====30% ] nsys-report-571e.nsys-rep [1/8] [=====31% ] nsys-report-571e.nsys-rep [1/8] [=====32% ] nsys-report-571e.nsys-rep [1/8] [======33% ] nsys-report-571e.nsys-rep [1/8] [=======36% ] nsys-report-571e.nsys-rep [1/8] [=======39% ] nsys-report-571e.nsys-rep [1/8] [========40% ] nsys-report-571e.nsys-rep [1/8] [========42% ] nsys-report-571e.nsys-rep [1/8] [===========50% ] nsys-report-571e.nsys-rep [1/8] [===========51% ] nsys-report-571e.nsys-rep [1/8] [=============60% ] nsys-report-571e.nsys-rep [1/8] [================68% ] nsys-report-571e.nsys-rep [1/8] [==================77% ] nsys-report-571e.nsys-rep [1/8] [====================85% ] nsys-report-571e.nsys-rep [1/8] [=======================94% ] nsys-report-571e.nsys-rep [1/8] [========================98% ] nsys-report-571e.nsys-rep [1/8] [========================100%] nsys-report-571e.nsys-rep [1/8] [========================100%] nsys-report-571e.nsys-rep [2/8] [0% ] nsys-report-61d4.sqlite [2/8] [1% ] nsys-report-61d4.sqlite [2/8] [2% ] nsys-report-61d4.sqlite [2/8] [3% ] nsys-report-61d4.sqlite [2/8] [4% ] nsys-report-61d4.sqlite [2/8] [5% ] nsys-report-61d4.sqlite [2/8] [6% ] nsys-report-61d4.sqlite [2/8] [7% ] nsys-report-61d4.sqlite [2/8] [8% ] nsys-report-61d4.sqlite [2/8] [9% ] nsys-report-61d4.sqlite [2/8] [10% ] nsys-report-61d4.sqlite [2/8] [11% ] nsys-report-61d4.sqlite [2/8] [12% ] nsys-report-61d4.sqlite [2/8] [13% ] nsys-report-61d4.sqlite [2/8] [14% ] nsys-report-61d4.sqlite [2/8] [=15% ] nsys-report-61d4.sqlite [2/8] [=16% ] nsys-report-61d4.sqlite [2/8] [=17% ] nsys-report-61d4.sqlite [2/8] [==18% ] nsys-report-61d4.sqlite [2/8] [==19% ] nsys-report-61d4.sqlite [2/8] [==20% ] nsys-report-61d4.sqlite [2/8] [==21% ] nsys-report-61d4.sqlite [2/8] [===22% ] nsys-report-61d4.sqlite [2/8] [===23% ] nsys-report-61d4.sqlite [2/8] [===24% ] nsys-report-61d4.sqlite [2/8] [====25% ] nsys-report-61d4.sqlite [2/8] [====26% ] nsys-report-61d4.sqlite [2/8] [====27% ] nsys-report-61d4.sqlite [2/8] [====28% ] nsys-report-61d4.sqlite [2/8] [=====29% ] nsys-report-61d4.sqlite [2/8] [=====30% ] nsys-report-61d4.sqlite [2/8] [=====31% ] nsys-report-61d4.sqlite [2/8] [=====32% ] nsys-report-61d4.sqlite [2/8] [======33% ] nsys-report-61d4.sqlite [2/8] [======34% ] nsys-report-61d4.sqlite [2/8] [======35% ] nsys-report-61d4.sqlite [2/8] [=======36% ] nsys-report-61d4.sqlite [2/8] [=======37% ] nsys-report-61d4.sqlite [2/8] [=======38% ] nsys-report-61d4.sqlite [2/8] [=======39% ] nsys-report-61d4.sqlite [2/8] [========40% ] nsys-report-61d4.sqlite [2/8] [========41% ] nsys-report-61d4.sqlite [2/8] [========42% ] nsys-report-61d4.sqlite [2/8] [=========43% ] nsys-report-61d4.sqlite [2/8] [=========44% ] nsys-report-61d4.sqlite [2/8] [=========45% ] nsys-report-61d4.sqlite [2/8] [=========46% ] nsys-report-61d4.sqlite [2/8] [==========47% ] nsys-report-61d4.sqlite [2/8] [==========48% ] nsys-report-61d4.sqlite [2/8] [==========49% ] nsys-report-61d4.sqlite [2/8] [===========50% ] nsys-report-61d4.sqlite [2/8] [===========51% ] nsys-report-61d4.sqlite [2/8] [===========52% ] nsys-report-61d4.sqlite [2/8] [===========53% ] nsys-report-61d4.sqlite [2/8] [============54% ] nsys-report-61d4.sqlite [2/8] [============55% ] nsys-report-61d4.sqlite [2/8] [============56% ] nsys-report-61d4.sqlite [2/8] [============57% ] nsys-report-61d4.sqlite [2/8] [=============58% ] nsys-report-61d4.sqlite [2/8] [=============59% ] nsys-report-61d4.sqlite [2/8] [=============60% ] nsys-report-61d4.sqlite [2/8] [==============61% ] nsys-report-61d4.sqlite [2/8] [==============62% ] nsys-report-61d4.sqlite [2/8] [==============63% ] nsys-report-61d4.sqlite [2/8] [==============64% ] nsys-report-61d4.sqlite [2/8] [===============65% ] nsys-report-61d4.sqlite [2/8] [===============66% ] nsys-report-61d4.sqlite [2/8] [===============67% ] nsys-report-61d4.sqlite [2/8] [================68% ] nsys-report-61d4.sqlite [2/8] [================69% ] nsys-report-61d4.sqlite [2/8] [================70% ] nsys-report-61d4.sqlite [2/8] [================71% ] nsys-report-61d4.sqlite [2/8] [=================72% ] nsys-report-61d4.sqlite [2/8] [=================73% ] nsys-report-61d4.sqlite [2/8] [=================74% ] nsys-report-61d4.sqlite [2/8] [==================75% ] nsys-report-61d4.sqlite [2/8] [==================76% ] nsys-report-61d4.sqlite [2/8] [==================77% ] nsys-report-61d4.sqlite [2/8] [==================78% ] nsys-report-61d4.sqlite [2/8] [===================79% ] nsys-report-61d4.sqlite [2/8] [===================80% ] nsys-report-61d4.sqlite [2/8] [===================81% ] nsys-report-61d4.sqlite [2/8] [===================82% ] nsys-report-61d4.sqlite [2/8] [====================83% ] nsys-report-61d4.sqlite [2/8] [====================84% ] nsys-report-61d4.sqlite [2/8] [====================85% ] nsys-report-61d4.sqlite [2/8] [=====================86% ] nsys-report-61d4.sqlite [2/8] [=====================87% ] nsys-report-61d4.sqlite [2/8] [=====================88% ] nsys-report-61d4.sqlite [2/8] [=====================89% ] nsys-report-61d4.sqlite [2/8] [======================90% ] nsys-report-61d4.sqlite [2/8] [======================91% ] nsys-report-61d4.sqlite [2/8] [======================92% ] nsys-report-61d4.sqlite [2/8] [=======================93% ] nsys-report-61d4.sqlite [2/8] [=======================94% ] nsys-report-61d4.sqlite [2/8] [=======================95% ] nsys-report-61d4.sqlite [2/8] [=======================96% ] nsys-report-61d4.sqlite [2/8] [========================97% ] nsys-report-61d4.sqlite [2/8] [========================98% ] nsys-report-61d4.sqlite [2/8] [========================99% ] nsys-report-61d4.sqlite [2/8] [========================100%] nsys-report-61d4.sqlite [2/8] [========================100%] nsys-report-61d4.sqlite [3/8] Executing 'nvtx_sum' stats report [4/8] Executing 'osrt_sum' stats report Time (%) Total Time (ns) Num Calls Avg (ns) Med (ns) Min (ns) Max (ns) StdDev (ns) Name -------- --------------- --------- ------------- ------------- ----------- ------------- ------------ ---------------------- 45.7 6,432,425,876 75 85,765,678.3 100,148,510.0 1,131 541,513,176 66,972,862.5 poll 39.1 5,502,111,747 11 500,191,977.0 500,091,666.0 500,064,476 500,420,812 149,209.3 pthread_cond_timedwait 14.5 2,042,489,720 5,642 362,015.2 1,070.0 289 1,254,612,700 16,703,631.1 read 0.4 58,720,560 1,956 30,020.7 8,750.0 209 10,802,610 321,096.5 ioctl 0.1 10,278,541 3,183 3,229.2 3,030.0 1,140 38,491 1,489.3 open64 0.0 5,062,699 1 5,062,699.0 5,062,699.0 5,062,699 5,062,699 0.0 nanosleep 0.0 4,719,085 13 363,006.5 59,941.0 55,530 3,943,222 1,075,769.4 sleep 0.0 3,766,705 131,629 28.6 30.0 20 7,130 42.7 pthread_cond_signal 0.0 3,163,169 138 22,921.5 6,209.5 2,680 1,600,635 136,671.4 mmap64 0.0 925,766 71 13,039.0 780.0 560 589,719 71,844.6 pread64 0.0 627,249 583 1,075.9 60.0 20 68,461 6,293.8 fgets 0.0 519,503 28 18,553.7 10,090.0 1,950 100,281 23,969.3 mmap 0.0 519,438 10 51,943.8 53,621.0 39,950 66,231 9,756.9 sem_timedwait 0.0 372,085 8 46,510.6 39,130.5 29,550 68,721 15,516.6 pthread_create 0.0 229,373 29 7,909.4 2,660.0 510 53,831 12,015.8 write 0.0 212,594 44 4,831.7 2,660.0 960 29,991 5,224.3 fopen 0.0 175,133 10 17,513.3 4,395.0 2,060 72,471 27,997.5 munmap 0.0 137,962 1 137,962.0 137,962.0 137,962 137,962 0.0 pthread_cond_wait 0.0 73,600 15 4,906.7 3,600.0 1,800 24,230 5,506.1 open 0.0 70,141 1 70,141.0 70,141.0 70,141 70,141 0.0 waitpid 0.0 67,089 41 1,636.3 1,150.0 660 9,470 1,507.4 fclose 0.0 61,480 1,622 37.9 30.0 20 4,520 139.5 pthread_cond_broadcast 0.0 47,891 2 23,945.5 23,945.5 9,740 38,151 20,089.6 connect 0.0 36,161 6 6,026.8 5,765.0 1,990 10,950 3,328.6 fopen64 0.0 31,760 133 238.8 230.0 20 1,720 177.7 sigaction 0.0 30,051 6 5,008.5 4,375.0 2,020 9,390 2,818.8 pipe2 0.0 30,050 4 7,512.5 7,730.0 3,390 11,200 3,708.9 socket 0.0 23,246 68 341.9 300.0 170 1,200 197.7 fcntl 0.0 21,022 541 38.9 40.0 29 930 38.8 flockfile 0.0 20,870 256 81.5 30.0 20 620 79.9 pthread_mutex_trylock 0.0 16,121 3 5,373.7 5,240.0 3,690 7,191 1,754.3 fread 0.0 7,630 2 3,815.0 3,815.0 1,640 5,990 3,075.9 bind 0.0 3,310 2 1,655.0 1,655.0 990 2,320 940.5 fwrite 0.0 3,300 10 330.0 270.0 200 550 125.2 dup 0.0 2,540 30 84.7 30.0 20 690 143.0 fflush 0.0 2,020 1 2,020.0 2,020.0 2,020 2,020 0.0 getc 0.0 1,010 2 505.0 505.0 240 770 374.8 dup2 0.0 650 1 650.0 650.0 650 650 0.0 listen [5/8] Executing 'cuda_api_sum' stats report Time (%) Total Time (ns) Num Calls Avg (ns) Med (ns) Min (ns) Max (ns) StdDev (ns) Name -------- --------------- --------- ----------- ----------- --------- ---------- ----------- --------------------------------------------- 57.9 242,878,568 1,676 144,915.6 29,675.5 2,300 2,906,016 301,718.2 cudaMemcpyAsync 19.8 82,993,996 1,676 49,519.1 10,610.5 630 252,644 69,376.8 cudaStreamSynchronize 17.7 74,149,494 644 115,139.0 7,840.5 3,620 15,954,210 972,290.5 cudaLaunchKernel 1.7 7,210,163 2 3,605,081.5 3,605,081.5 1,087,907 6,122,256 3,559,822.3 cudaFree 1.7 6,974,859 9 774,984.3 1,760.0 310 6,961,489 2,319,939.3 cudaStreamIsCapturing_v10000 0.6 2,317,668 49 47,299.3 47,240.0 40,531 50,931 2,786.7 cuCtxSynchronize 0.2 1,045,127 9 116,125.2 141,092.0 1,980 204,283 67,750.9 cudaMalloc 0.2 732,474 49 14,948.4 14,840.0 8,910 26,710 2,883.1 cuLaunchKernel 0.1 382,191 62 6,164.4 4,000.0 3,051 24,071 4,022.1 cudaMemsetAsync 0.1 340,324 1,532 222.1 190.0 50 3,290 154.9 cuGetProcAddress_v2 0.0 189,144 2 94,572.0 94,572.0 83,002 106,142 16,362.5 cuModuleLoadData 0.0 163,282 1 163,282.0 163,282.0 163,282 163,282 0.0 cudaGetDeviceProperties_v2_v12000 0.0 92,013 26 3,539.0 3,480.0 361 7,220 1,657.8 cudaOccupancyMaxActiveBlocksPerMultiprocessor 0.0 18,060 18 1,003.3 255.0 160 11,380 2,622.5 cudaEventCreateWithFlags 0.0 4,420 4 1,105.0 1,110.0 480 1,720 507.9 cuInit 0.0 3,350 1 3,350.0 3,350.0 3,350 3,350 0.0 cuMemFree_v2 0.0 1,150 2 575.0 575.0 220 930 502.0 cudaGetDriverEntryPoint_v11030 0.0 990 1 990.0 990.0 990 990 0.0 cuCtxSetCurrent 0.0 830 4 207.5 240.0 70 280 93.9 cuModuleGetLoadingMode [6/8] Executing 'cuda_gpu_kern_sum' stats report Time (%) Total Time (ns) Instances Avg (ns) Med (ns) Min (ns) Max (ns) StdDev (ns) Name -------- --------------- --------- -------- -------- -------- -------- ----------- ---------------------------------------------------------------------------------------------------- 48.6 2,148,688 49 43,850.8 43,776.0 43,648 45,920 330.0 cutlass_tensorop_f16_s16816gemm_f16_256x128_32x3_tt_align8 7.4 325,953 48 6,790.7 6,720.0 6,528 7,104 180.6 void at::native::elementwise_kernel<(int)128, (int)4, void at::native::gpu_kernel_impl<at::native::… 6.8 299,073 12 24,922.8 24,896.0 24,832 25,248 110.7 ampere_fp16_s16816gemm_fp16_128x64_ldg8_f2f_stages_64x4_nn 4.6 204,196 72 2,836.1 2,880.0 2,336 3,392 382.1 void at::native::elementwise_kernel<(int)128, (int)4, void at::native::gpu_kernel_impl<at::native::… 4.0 175,554 48 3,657.4 3,728.0 3,424 3,904 228.3 void at::native::reduce_kernel<(int)512, (int)1, at::native::ReduceOp<c10::Half, at::native::MeanOp… 3.3 143,904 12 11,992.0 11,936.0 11,903 12,512 168.9 void at::native::elementwise_kernel<(int)128, (int)4, void at::native::gpu_kernel_impl<at::native::… 2.9 126,590 24 5,274.6 5,344.0 4,768 5,664 285.1 void cutlass::Kernel<cutlass_80_wmma_tensorop_f16_s161616gemm_f16_32x32_64x1_nn_align8>(T1::Params) 2.3 103,104 48 2,148.0 2,176.0 1,984 2,368 136.9 void at::native::elementwise_kernel<(int)128, (int)4, void at::native::gpu_kernel_impl<at::native::… 2.3 100,705 36 2,797.4 2,240.0 2,208 3,968 807.3 void at::native::elementwise_kernel<(int)128, (int)4, void at::native::gpu_kernel_impl<at::native::… 2.2 96,416 12 8,034.7 8,032.0 7,968 8,096 42.0 void at::native::elementwise_kernel<(int)128, (int)4, void at::native::gpu_kernel_impl<at::native::… 2.2 95,072 12 7,922.7 7,936.0 7,776 8,032 64.7 ampere_fp16_s16816gemm_fp16_64x64_ldg8_f2f_stages_64x5_nn 1.9 84,607 12 7,050.6 7,072.0 6,816 7,104 77.6 void at::native::elementwise_kernel<(int)128, (int)4, void at::native::gpu_kernel_impl<at::native::… 1.5 65,825 36 1,828.5 1,504.0 1,472 2,560 498.2 void at::native::vectorized_elementwise_kernel<(int)4, at::native::CUDAFunctor_add<c10::Half>, at::… 1.5 65,344 27 2,420.1 2,432.0 1,824 2,592 136.4 void at::native::elementwise_kernel<(int)128, (int)2, void at::native::gpu_kernel_impl<at::native::… 1.5 65,282 36 1,813.4 1,472.0 1,440 2,560 505.3 void at::native::vectorized_elementwise_kernel<(int)4, at::native::BinaryFunctor<c10::Half, c10::Ha… 1.5 64,640 12 5,386.7 5,328.0 5,216 6,113 239.5 void <unnamed>::softmax_warp_forward<float, float, float, (int)8, (bool)0, (bool)0>(T2 *, const T1 … 1.4 61,664 49 1,258.4 1,088.0 800 1,888 339.4 void at::native::vectorized_elementwise_kernel<(int)4, at::native::FillFunctor<c10::Half>, at::deta… 0.7 31,390 24 1,307.9 1,312.0 1,184 1,344 27.2 void at::native::unrolled_elementwise_kernel<at::native::CUDAFunctor_add<c10::Half>, at::detail::Ar… 0.7 31,200 12 2,600.0 2,560.0 2,528 3,040 139.2 void at::native::vectorized_elementwise_kernel<(int)4, at::native::tanh_kernel_cuda(at::TensorItera… 0.6 27,426 27 1,015.8 992.0 928 1,824 162.3 void at::native::vectorized_elementwise_kernel<(int)4, at::native::CUDAFunctor_add<float>, at::deta… 0.6 27,102 24 1,129.3 1,120.0 1,056 1,152 22.1 void at::native::vectorized_elementwise_kernel<(int)4, at::native::reciprocal_kernel_cuda(at::Tenso… 0.6 26,304 24 1,096.0 1,088.0 1,056 1,120 17.0 void at::native::vectorized_elementwise_kernel<(int)4, at::native::sqrt_kernel_cuda(at::TensorItera… 0.5 22,240 24 926.7 928.0 896 929 6.5 void at::native::vectorized_elementwise_kernel<(int)4, at::native::AUnaryFunctor<c10::Half, c10::Ha… 0.2 9,408 5 1,881.6 1,664.0 1,344 2,528 519.6 void at::native::elementwise_kernel<(int)128, (int)2, void at::native::gpu_kernel_impl<at::native::… 0.2 7,775 2 3,887.5 3,887.5 3,744 4,031 202.9 void at::native::reduce_kernel<(int)512, (int)1, at::native::ReduceOp<float, at::native::MeanOps<fl… 0.1 2,656 1 2,656.0 2,656.0 2,656 2,656 0.0 void at::native::unrolled_elementwise_kernel<at::native::CUDAFunctor_add<float>, at::detail::Array<… 0.0 2,144 1 2,144.0 2,144.0 2,144 2,144 0.0 void cutlass::Kernel<cutlass_80_wmma_tensorop_f16_s161616gemm_f16_32x32_32x1_nn_align2>(T1::Params) 0.0 1,856 1 1,856.0 1,856.0 1,856 1,856 0.0 void at::native::vectorized_elementwise_kernel<(int)4, at::native::BinaryFunctor<float, float, floa… 0.0 1,024 1 1,024.0 1,024.0 1,024 1,024 0.0 void at::native::vectorized_elementwise_kernel<(int)4, at::native::reciprocal_kernel_cuda(at::Tenso… 0.0 1,024 1 1,024.0 1,024.0 1,024 1,024 0.0 void at::native::vectorized_elementwise_kernel<(int)4, at::native::sqrt_kernel_cuda(at::TensorItera… 0.0 896 1 896.0 896.0 896 896 0.0 void at::native::vectorized_elementwise_kernel<(int)4, at::native::AUnaryFunctor<float, float, floa… [7/8] Executing 'cuda_gpu_mem_time_sum' stats report Time (%) Total Time (ns) Count Avg (ns) Med (ns) Min (ns) Max (ns) StdDev (ns) Operation -------- --------------- ----- --------- -------- -------- --------- ----------- ---------------------------- 58.7 96,445,173 1,092 88,319.8 61,121.0 287 712,771 134,050.2 [CUDA memcpy Host-to-Device] 41.3 67,739,236 584 115,991.8 59,264.0 928 1,231,205 172,934.3 [CUDA memcpy Device-to-Host] 0.0 27,361 62 441.3 320.0 287 1,216 238.9 [CUDA memset] [8/8] Executing 'cuda_gpu_mem_size_sum' stats report Total (MB) Count Avg (MB) Med (MB) Min (MB) Max (MB) StdDev (MB) Operation ---------- ----- -------- -------- -------- -------- ----------- ---------------------------- 626.375 1,092 0.574 0.393 0.000 4.719 0.881 [CUDA memcpy Host-to-Device] 393.055 584 0.673 0.393 0.000 3.146 0.785 [CUDA memcpy Device-to-Host] 0.001 62 0.000 0.000 0.000 0.000 0.000 [CUDA memset] Generated: /tmp/nsys-report-571e.nsys-rep /tmp/nsys-report-61d4.sqlite
Editor is loading...
Leave a Comment