Micropython EV3 Functions
Gyrostrate [PID and Proportional] and Line Follower [PID Double Sensor, PID Single Sensor]Francisco
python
2 years ago
3.0 kB
25
Indexable
# Gyrostrate and PID Line Following
#!/usr/bin/env pybricks-micropython
from pybricks.hubs import EV3Brick
from pybricks.ev3devices import (Motor, ColorSensor, GyroSensor)
from pybricks.robotics import DriveBase
from pybricks.parameters import Port, Color, Stop
# OBJECTS
robot = DriveBase(Motor(Port.A), Motor(Port.B), wheel_diameter = 142.24, axle_track = 152)
color_sensor = ColorSensor(Port.S1)
color_sensor2 = ColorSensor(Port.S2)
gyro_sensor = GyroSensor(Port.S3)
right_wheel = Motor(Port.B)
left_wheel = Motor(Port.A)
ev3 = EV3Brick()
# PROGRAM
## Color Sensor
### PID Line Follower
def follow_line_pid(threshold):
integral = 0
derivative = 0
last_error = 0
error = 0
kp = 2
ki = .09
kd = .5
while True:
error = (threshold - color_sensor.reflection())
integral += error
derivative = error - last_error
proportional_gain = (error * kp)
integral_gain = (integral * ki)
derivative_gain = (derivative * kd)
correction = (proportional_gain + integral_gain + derivative_gain)
robot.drive(50, correction)
error = last_error
### PID Double Line Follower
def double_follow_line_pid():
integral = 0
derivative = 0
last_error = 0
error = 0
kp = 2
ki = 0.09
kd = 0.5
while True:
error = (color_sensor.reflection() - color_sensor2.reflection())
integral += error
derivative = error - last_error
proportional_gain = (error * kp)
integral_gain = (integral * ki)
derivative_gain = (derivative * kd)
correction = (proportional_gain + integral_gain + derivative_gain)
robot.drive(50, correction)
last_error = error
## Gyro Sensor
### Proportional Gyrostrate
def gyrostrate_proportional(angle, distance):
gyro_sensor.reset_angle(angle)
while robot.distance() != distance:
direction = gyro_sensor.angle() * -10
robot.drive(50, direction)
right_wheel.hold()
left_wheel.hold()
robot.drive(0, 0, stop = Stop.HOLD)
### PID Gyrostrate
def gyrostrate_pid(angle, distance):
gyro_sensor.reset_angle(angle)
derivative = 0
integral = 0
last_error = 0
error = 0
kp = 2
ki = 0.09
kd = 0.5
while robot.distance() != distance:
error = (angle - gyro_sensor.angle())
derivative = (error - last_error)
integral += error
integral_gain = (integral * ki)
derivative_gain = (derivative * kd)
proportional_gain = (angle - gyro_sensor.angle()) * kp
correction = (proportional_gain + integral_gain + derivative_gain)
robot.drive(100, correction)
robot.drive(0, 0, stop = stop.HOLD)
right_wheel.hold()
left_wheel.hold()Editor is loading...