Untitled
import onnxruntime as ort import numpy as np # Path to the ONNX model onnx_path = "single_layer_lstm_static_shape.onnx" # Load the ONNX model session = ort.InferenceSession(onnx_path) # Generate random input matching the model's input shape (batch size 1, sequence length 15, input size 10) input_shape = (1, 15, 10) # Adjust according to your model's input size random_input = np.random.rand(*input_shape).astype(np.float32) # Get the model's input and output names input_name = session.get_inputs()[0].name output_name = session.get_outputs()[0].name # Pass the random input through the ONNX model output = session.run([output_name], {input_name: random_input})[0] # Save the input to a raw file input_file = "input.raw" random_input.tofile(input_file) # Save the output to a raw file output_file = "output.raw" output.tofile(output_file) print(f"Random input has been saved to {input_file}") print(f"Model output has been saved to {output_file}")
Leave a Comment