Untitled
unknown
plain_text
2 years ago
2.9 kB
9
Indexable
from flask import Flask
from flask import request, jsonify
from flask_cors import CORS, cross_origin
import numpy as np
import cv2
import base64
# Khai bao cong cua server
my_port = '8000'
scale = 0.00392
conf_threshold = 0.5
nms_threshold = 0.4
# Doan ma khoi tao server
app = Flask(__name__)
CORS(app)
# Cac ham ho tro chay YOLO
def get_output_layers(net):
layer_names = net.getLayerNames()
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
return output_layers
def build_return(class_id, x, y, x_plus_w, y_plus_h):
return str(class_id) + "," + str(x) + "," + str(y) + "," + str(x_plus_w) + "," + str(y_plus_h)
# Khoi tao model YOLO
net = cv2.dnn.readNet("yolov3.weights", "yolov3.cfg")
# Khai bao ham xu ly request index
@app.route('/')
@cross_origin()
def index():
return "Welcome to flask API!"
# Khai bao ham xu ly request hello_word
@app.route('/hello_world', methods=['GET'])
@cross_origin()
def hello_world():
# Lay staff id cua client gui len
staff_id = request.args.get('staff_id')
# Tra ve cau chao Hello
return "Hello " + str(staff_id)
# Khai bao ham xu ly request detect
@app.route('/detect', methods=['POST'])
@cross_origin()
def detect():
# Lay du lieu image B64 gui len va chuyen thanh image
image_b64 = request.form.get('image')
image = np.fromstring(base64.b64decode(image_b64), dtype=np.uint8)
image = cv2.imdecode(image, cv2.IMREAD_ANYCOLOR)
# Lay kich thuoc anh gui len
Width = image.shape[1]
Height = image.shape[0]
# Nhan dien bang YOLO
blob = cv2.dnn.blobFromImage(image, scale, (416, 416), (0, 0, 0), True, crop=False)
net.setInput(blob)
outs = net.forward(get_output_layers(net))
class_ids = []
confidences = []
boxes = []
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > conf_threshold:
center_x = int(detection[0] * Width)
center_y = int(detection[1] * Height)
w = int(detection[2] * Width)
h = int(detection[3] * Height)
x = center_x - w / 2
y = center_y - h / 2
class_ids.append(class_id)
confidences.append(float(confidence))
boxes.append([x, y, w, h])
indices = cv2.dnn.NMSBoxes(boxes, confidences, conf_threshold, nms_threshold)
retString = ""
for i in indices:
i = i[0]
box = boxes[i]
x = box[0]
y = box[1]
w = box[2]
h = box[3]
# Xay dung chuoi tra ve client
retString += build_return(class_ids[i], round(x), round(y), round( w), round( h)) + "|"
return retString;
# Thuc thi server
if __name__ == '__main__':
app.run(debug=True, host='0.0.0.0',port=my_port)Editor is loading...