Untitled

 avatar
unknown
plain_text
a month ago
904 B
2
Indexable
    full_dataset = SentimentDataset(pickle_file="dataset.pkl")
    train_size = int(0.8 * len(full_dataset))
    val_size = len(full_dataset) - train_size
    train_dataset, val_dataset = random_split(full_dataset, [train_size, val_size])

    train_loader = DataLoader(train_dataset, batch_size=8, shuffle=True)
    val_loader = DataLoader(val_dataset, batch_size=8, shuffle=False)

    # Instantiate the model
    model = SentimentClassifier()

    # Define loss function and optimizer
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.Adam(model.parameters(), lr=0.001)

    # Train the model
    trained_model = train_model(model, train_loader, val_loader, criterion, optimizer, num_epochs=5, device='cpu')

    # Dummy input (batch_size=4, input_dim=768)
    dummy_input = torch.randn(4, 768)

    # Forward pass
    output = trained_model(dummy_input)

    print("Output logits:", output)
Leave a Comment