Untitled
unknown
plain_text
10 months ago
904 B
6
Indexable
full_dataset = SentimentDataset(pickle_file="dataset.pkl")
train_size = int(0.8 * len(full_dataset))
val_size = len(full_dataset) - train_size
train_dataset, val_dataset = random_split(full_dataset, [train_size, val_size])
train_loader = DataLoader(train_dataset, batch_size=8, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=8, shuffle=False)
# Instantiate the model
model = SentimentClassifier()
# Define loss function and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# Train the model
trained_model = train_model(model, train_loader, val_loader, criterion, optimizer, num_epochs=5, device='cpu')
# Dummy input (batch_size=4, input_dim=768)
dummy_input = torch.randn(4, 768)
# Forward pass
output = trained_model(dummy_input)
print("Output logits:", output)Editor is loading...
Leave a Comment