mahoa

 avatar
unknown
c_cpp
5 months ago
35 kB
2
Indexable
//maHoaaa
#include<stdio.h>
#include<stdlib.h>
#include<stdint.h>
#include<string.h>
#include<time.h>
#include <malloc.h>
#include <android/log.h>
#define LFSR_SIZE 16
#define FSM_SIZE 3
#define key_len 256
typedef unsigned int uint32_t;
typedef unsigned char uint8_t;
typedef unsigned char BYTE;
typedef long DWORD;
static uint32_t LFSR[LFSR_SIZE];
static uint32_t R1, R2, R3;
uint8_t GF_MUL(uint8_t a,uint8_t b){
  uint8_t p=0;
  uint8_t hi_bit_set;
  for(int i=0;i<8;i++){
    if(b & 1)
      p^=a;
    hi_bit_set = (a & 0x80);
    a <<= 1;
    if(hi_bit_set)
      a ^= 0x1B;
    b >>= 1;
  }
  return p;
}
const uint8_t sBox[256] = {
    0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5,
    0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76,
    0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0,
    0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0,
    0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC,
    0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15,
    0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A,
    0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75,
    0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0,
    0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84,
    0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B,
    0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF,
    0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85,
    0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8,
    0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5,
    0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2,
    0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17,
    0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73,
    0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88,
    0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB,
    0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C,
    0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79,
    0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9,
    0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08,
    0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6,
    0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A,
    0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E,
    0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E,
    0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94,
    0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF,
    0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68,
    0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16
};
const uint8_t invSBox[256] = {
    0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38,
    0xBF, 0x40, 0xA3, 0x9E, 0x81, 0xF3, 0xD7, 0xFB,
    0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F, 0xFF, 0x87,
    0x34, 0x8E, 0x43, 0x44, 0xC4, 0xDE, 0xE9, 0xCB,
    0x54, 0x7B, 0x94, 0x32, 0xA6, 0xC2, 0x23, 0x3D,
    0xEE, 0x4C, 0x95, 0x0B, 0x42, 0xFA, 0xC3, 0x4E,
    0x08, 0x2E, 0xA1, 0x66, 0x28, 0xD9, 0x24, 0xB2,
    0x76, 0x5B, 0xA2, 0x49, 0x6D, 0x8B, 0xD1, 0x25,
    0x72, 0xF8, 0xF6, 0x64, 0x86, 0x68, 0x98, 0x16,
    0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65, 0xB6, 0x92,
    0x6C, 0x70, 0x48, 0x50, 0xFD, 0xED, 0xB9, 0xDA,
    0x5E, 0x15, 0x46, 0x57, 0xA7, 0x8D, 0x9D, 0x84,
    0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A,
    0xF7, 0xE4, 0x58, 0x05, 0xB8, 0xB3, 0x45, 0x06,
    0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02,
    0xC1, 0xAF, 0xBD, 0x03, 0x01, 0x13, 0x8A, 0x6B,
    0x3A, 0x91, 0x11, 0x41, 0x4F, 0x67, 0xDC, 0xEA,
    0x97, 0xF2, 0xCF, 0xCE, 0xF0, 0xB4, 0xE6, 0x73,
    0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85,
    0xE2, 0xF9, 0x37, 0xE8, 0x1C, 0x75, 0xDF, 0x6E,
    0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89,
    0x6F, 0xB7, 0x62, 0x0E, 0xAA, 0x18, 0xBE, 0x1B,
    0xFC, 0x56, 0x3E, 0x4B, 0xC6, 0xD2, 0x79, 0x20,
    0x9A, 0xDB, 0xC0, 0xFE, 0x78, 0xCD, 0x5A, 0xF4,
    0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07, 0xC7, 0x31,
    0xB1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xEC, 0x5F,
    0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D,
    0x2D, 0xE5, 0x7A, 0x9F, 0x93, 0xC9, 0x9C, 0xEF,
    0xA0, 0xE0, 0x3B, 0x4D, 0xAE, 0x2A, 0xF5, 0xB0,
    0xC8, 0xEB, 0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61,
    0x17, 0x2B, 0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26,
    0xE1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0C, 0x7D
};
const uint8_t rcon[15] = {
    0x00, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1B, 0x36, 0x6C, 0xD8, 0xAB, 0x4D
};
void string_to_hex(uint8_t* string, char* hex, char string_len){
  for(int i = 0; i<string_len; i++){
    snprintf(hex + 2 * i, 4,  "%02x", string[i]);
  }
  hex[string_len*2]=0;
}
void hex_to_string(const char* hex, char* string, int hex_len){
  int val;
  for(int i=0; i<hex_len/2; i++){
    sscanf(hex + 2 * i, "%2x", &val);
    string[i]=(char)val;
  }
  string[hex_len/2]=0;
}
void padding(char *input) {
    for (int i = strlen(input);i <= strlen(input) + 16;i++)
        input[i] = 0;
}
void KeyExpansion(uint8_t* key, uint8_t w[15][4][4]) {

    for (int i = 0; i < 4; i++) {
        for (int j = 0; j < 4; j++) {
            w[0][i][j] = key[i * 4 + j];
        }
    }
    for (int i = 1; i <= 14; i++) {
        for (int j = 0; j < 4; j++) {
            w[i][0][j] = w[i - 1][0][j] ^ sBox[w[i - 1][1][j]] ^ rcon[i];
            for (int k = 1; k < 4; k++) {
                w[i][k][j] = w[i - 1][k][j] ^ w[i][k - 1][j];
            }
        }
    }
}
void generateKey256(char* key, int length) {
    srand(time(NULL));
    for (int i = 0;i < length*2;i++){
      int r = rand() % 256;
      if(r/16<=9)
        key[i]=r/16+'0';
      else
        key[i]=r/16+'A'-10;
      i++;
      if(r%16<=9)
        key[i]=r%16+'0';
      else
        key[i]=r%16+'A'-10;
    }
    key[length*2]=0;
}
void generateIV(uint8_t* iv, int length) {
    srand(time(NULL));
    for (int i = 0;i < length;i++)
        iv[i] = rand() % 256;
}
void subBytes(uint8_t state[4][4]) {
    for (int i = 0;i < 4;i++)
        for (int j = 0;j < 4;j++)
            state[i][j] = sBox[state[i][j]];
}
void shiftRow(uint8_t state[4][4]) {
    for (int i = 1;i < 4;i++) {
        for (int k = 0;k < i;k++) {
            uint8_t temp = state[i][0];
            for (int j = 0;j < 3;j++)
                state[i][j] = state[i][j + 1];
            state[i][3] = temp;
        }
    }
}

void addRoundKey(uint8_t state[4][4],uint8_t roundKey[4][4]) {
    for (int i = 0;i < 4;i++)
        for (int j = 0;j < 4;j++)
            state[i][j] ^= roundKey[i][j];
}
void mixColumns(uint8_t state[4][4]) {
    uint8_t temp[4][4];
    for (int j = 0; j < 4; j++) {
        temp[0][j] = GF_MUL(0x02, state[0][j]) ^ GF_MUL(0x03, state[1][j]) ^ state[2][j] ^ state[3][j];
        temp[1][j] = state[0][j] ^ GF_MUL(0x02, state[1][j]) ^ GF_MUL(0x03, state[2][j]) ^ state[3][j];
        temp[2][j] = state[0][j] ^ state[1][j] ^ GF_MUL(0x02, state[2][j]) ^ GF_MUL(0x03, state[3][j]);
        temp[3][j] = GF_MUL(0x03, state[0][j]) ^ state[1][j] ^ state[2][j] ^ GF_MUL(0x02, state[3][j]);
    }
    for (int i = 0; i < 4; i++) {
        for (int j = 0; j < 4; j++) {
            state[i][j] = temp[i][j];
        }
    }
}
void invSubBytes(uint8_t state[4][4]) {
    for (int i = 0;i < 4;i++)
        for (int j = 0;j < 4;j++)
            state[i][j] = invSBox[state[i][j]];
}
void invShiftRow(uint8_t state[4][4]) {
    for (int i = 1;i < 4;i++) {
        for (int k = 0;k < i;k++) {
            uint8_t temp = state[i][3];
            for (int j = 3;j > 0;j--)
                state[i][j] = state[i][j - 1];
            state[i][0] = temp;
        }
    }
}
void invMixColumns(uint8_t state[4][4]){
    uint8_t temp[4][4];
    for (int j = 0; j < 4; j++) {
        temp[0][j] = GF_MUL(0x0E, state[0][j]) ^ GF_MUL(0x0B, state[1][j]) ^ GF_MUL(0x0D,state[2][j]) ^ GF_MUL(0x09,state[3][j]);
        temp[1][j] = GF_MUL(0x09, state[0][j]) ^ GF_MUL(0x0E, state[1][j]) ^ GF_MUL(0x0B,state[2][j]) ^ GF_MUL(0x0D,state[3][j]);
        temp[2][j] = GF_MUL(0x0D, state[0][j]) ^ GF_MUL(0x09, state[1][j]) ^ GF_MUL(0x0E,state[2][j]) ^ GF_MUL(0x0B,state[3][j]);
        temp[3][j] = GF_MUL(0x0B, state[0][j]) ^ GF_MUL(0x0D, state[1][j]) ^ GF_MUL(0x09,state[2][j]) ^ GF_MUL(0x0E,state[3][j]);
    }
    for (int i = 0; i < 4; i++) {
        for (int j = 0; j < 4; j++) {
            state[i][j] = temp[i][j];
        }
    }
}
void enCryptAES(char* input, char* keyHex, char output[256]) {
    uint8_t iv[16];
    uint8_t state[4][4];
    uint8_t roundKey[15][4][4];
    uint8_t cipherText[256];
    uint8_t* key = (uint8_t*) malloc(33);
    for(int i=0;keyHex[i]!=0;i++){
          if(keyHex[i]<='9')
            key[i/2]=keyHex[i]-'0';
          else if(keyHex[i]>='a')
            key[i/2]=keyHex[i]-'a'+10;
          else
            key[i/2]=keyHex[i]-'A'+10;
          i++;
          if(keyHex[i]<='9')
            key[i/2]=key[i/2]*16+keyHex[i]-'0';
          else if(keyHex[i]>='a')
            key[i/2]=key[i/2]*16+keyHex[i]-'a'+10;
          else
            key[i/2]=key[i/2]*16+keyHex[i]-'A'+10;
        }
    KeyExpansion(key, roundKey);
    int len = ((strlen(input) + 16) / 16) * 16;
    generateIV(iv, 16);
    for (int i = 0;i < 16;i++)
        cipherText[i] = iv[i];
    padding(input);
    for (int block = 0;block < (strlen(input) + 16) / 16;block++) {
        if (block == 0) {
            for (int i = 0;i < 16;i++)
                state[i / 4][i % 4] = iv[i] ^ input[i];
        }
        else {
            for (int i = block*16;i < block*16+16;i++)
                state[(i / 4)%4][i % 4] = cipherText[i] ^ input[i];
        }

        addRoundKey(state, roundKey[0]);
        for (int loop = 1;loop < 14;loop++) {
            subBytes(state);
            shiftRow(state);
            mixColumns(state);


            addRoundKey(state, roundKey[loop]);
        }
        subBytes(state);
        shiftRow(state);
        addRoundKey(state, roundKey[14]);

        for (int i = block * 16;i < block * 16 + 16;i++)
            cipherText[i+16] = state[(i / 4)%4][i % 4];


    }
    string_to_hex(cipherText,output,len+16);

}
void deCryptAES(char* plaintext, char* keyHex, char* output){
  uint8_t* key = (uint8_t*) malloc(33);
    for(int i=0;keyHex[i]!=0;i++){
          if(keyHex[i]<='9')
            key[i/2]=keyHex[i]-'0';
          else if(keyHex[i]>='a')
            key[i/2]=keyHex[i]-'a'+10;
          else
            key[i/2]=keyHex[i]-'A'+10;
          i++;
          if(keyHex[i]<='9')
            key[i/2]=key[i/2]*16+keyHex[i]-'0';
          else if(keyHex[i]>='a')
            key[i/2]=key[i/2]*16+keyHex[i]-'a'+10;
          else
            key[i/2]=key[i/2]*16+keyHex[i]-'A'+10;
        }
  char input[256];
  hex_to_string(plaintext, input, strlen(plaintext));
    uint8_t iv[16];
    uint8_t roundKey[15][4][4];
    KeyExpansion(key,roundKey);
    for(int i=0;i<16;i++)
      iv[i]=input[i];
    int blockCount=strlen(plaintext)/32;
    uint8_t state[4][4];
    for(int block=blockCount-1; block>0; block--){
      for(int i=block*16; i<block*16+16; i++){
        state[(i/4)%4][i%4]=input[i];
      }
      addRoundKey(state, roundKey[14]);
      for(int loop=13;loop>0;loop--){
        invShiftRow(state);
        invSubBytes(state);

        addRoundKey(state,roundKey[loop]);

        invMixColumns(state);

      }
      invShiftRow(state);
      invSubBytes(state);
      addRoundKey(state,roundKey[0]);
      if(block==1)
        for(int i=0;i<16;i++)
          output[i]=iv[i]^state[i/4][i%4];
      else{
        for(int i=block*16;i<block*16+16;i++)
          output[i-16]=input[i-16]^state[(i/4)%4][i%4];
      }
    }
}

void KeyExpansion_128(uint8_t* key, uint8_t w[11][4][4]) {

    for (int i = 0; i < 4; i++) {
        for (int j = 0; j < 4; j++) {
            w[0][i][j] = key[i * 4 + j];
        }
    }
    for (int i = 1; i <= 10; i++) {
        for (int j = 0; j < 4; j++) {
            w[i][0][j] = w[i - 1][0][j] ^ sBox[w[i - 1][1][j]] ^ rcon[i];
            for (int k = 1; k < 4; k++) {
                w[i][k][j] = w[i - 1][k][j] ^ w[i][k - 1][j];
            }
        }
    }
}

void enCryptAES_128(char* input, char* keyHex, char output[256]) {
    uint8_t iv[16];
    uint8_t state[4][4];
    uint8_t roundKey[11][4][4];
    uint8_t cipherText[256];
    uint8_t* key = (uint8_t*) malloc(17);
    for(int i=0;keyHex[i]!=0;i++){
          if(keyHex[i]<='9')
            key[i/2]=keyHex[i]-'0';
          else if(keyHex[i]>='a')
            key[i/2]=keyHex[i]-'a'+10;
          else
            key[i/2]=keyHex[i]-'A'+10;
          i++;
          if(keyHex[i]<='9')
            key[i/2]=key[i/2]*16+keyHex[i]-'0';
          else if(keyHex[i]>='a')
            key[i/2]=key[i/2]*16+keyHex[i]-'a'+10;
          else
            key[i/2]=key[i/2]*16+keyHex[i]-'A'+10;
        }
    KeyExpansion_128(key, roundKey);
    int len = ((strlen(input) + 16) / 16) * 16;
    generateIV(iv, 16);
    for (int i = 0;i < 16;i++)
        cipherText[i] = iv[i];
    padding(input);
    for (int block = 0;block < (strlen(input) + 16) / 16;block++) {
        if (block == 0) {
            for (int i = 0;i < 16;i++)
                state[i / 4][i % 4] = iv[i] ^ input[i];
        }
        else {
            for (int i = block*16;i < block*16+16;i++)
                state[(i / 4)%4][i % 4] = cipherText[i] ^ input[i];
        }

        addRoundKey(state, roundKey[0]);
        for (int loop = 1;loop < 10;loop++) {
            subBytes(state);
            shiftRow(state);
            mixColumns(state);
            addRoundKey(state, roundKey[loop]);
        }
        subBytes(state);
        shiftRow(state);
        addRoundKey(state, roundKey[10]);

        for (int i = block * 16;i < block * 16 + 16;i++)
            cipherText[i+16] = state[(i / 4)%4][i % 4];


    }
    string_to_hex(cipherText,output,len+16);

}
void deCryptAES_128(char* plaintext, char* keyHex, char* output){
  uint8_t* key = (uint8_t*) malloc(17);
    for(int i=0;keyHex[i]!=0;i++){
          if(keyHex[i]<='9')
            key[i/2]=keyHex[i]-'0';
          else if(keyHex[i]>='a')
            key[i/2]=keyHex[i]-'a'+10;
          else
            key[i/2]=keyHex[i]-'A'+10;
          i++;
          if(keyHex[i]<='9')
            key[i/2]=key[i/2]*16+keyHex[i]-'0';
          else if(keyHex[i]>='a')
            key[i/2]=key[i/2]*16+keyHex[i]-'a'+10;
          else
            key[i/2]=key[i/2]*16+keyHex[i]-'A'+10;
        }
  char input[256];
  hex_to_string(plaintext, input, strlen(plaintext));
    uint8_t iv[16];
    uint8_t roundKey[11][4][4];
    KeyExpansion_128(key,roundKey);
    for(int i=0;i<16;i++)
      iv[i]=input[i];
    int blockCount=strlen(plaintext)/32;
    uint8_t state[4][4];
    for(int block=blockCount-1; block>0; block--){
      for(int i=block*16; i<block*16+16; i++){
        state[(i/4)%4][i%4]=input[i];
      }
      addRoundKey(state, roundKey[10]);
      for(int loop=9;loop>0;loop--){
        invShiftRow(state);
        invSubBytes(state);

        addRoundKey(state,roundKey[loop]);

        invMixColumns(state);

      }
      invShiftRow(state);
      invSubBytes(state);
      addRoundKey(state,roundKey[0]);
      if(block==1)
        for(int i=0;i<16;i++)
          output[i]=iv[i]^state[i/4][i%4];
      else{
        for(int i=block*16;i<block*16+16;i++)
          output[i-16]=input[i-16]^state[(i/4)%4][i%4];
      }
    }
}

uint32_t* string_to_uint32_array(const char* input, int* out_len) {

    int len = strlen(input);

    int num_uint32 = (len + 4) / 4;

    uint32_t* uint32_array = (uint32_t*)malloc(num_uint32 * sizeof(uint32_t));

    for (int i = 0; i < num_uint32; i++) {
        uint32_array[i] = 0;
    }

    for (int i = 0; i < len; i++) {
        uint32_array[i / 4] |= (uint32_t)(uint8_t)input[i] << (8 * (3 - (i % 4)));
    }

    *out_len = num_uint32;

    return uint32_array;
}
char* uint32_array_to_string(uint32_t* input, int inp_len) {
    char* output = (char*)malloc(inp_len * 4 + 1);
    output[inp_len * 4] = 0;
    for (int i = 0; i < inp_len * 4;i++) {
        output[i] = (char)((input[i / 4] >> (24 - (i % 4) * 8)) & 0XFF);
    }
    return output;
}
void uint32_arr_to_hex(uint32_t* arr, int inpLen, char* hex){
    hex[inpLen*8]=0;
    for (int i = 0; i < inpLen * 4;i++) {
        BYTE value = (BYTE)((arr[i / 4] >> (24 - (i % 4) * 8)) & 0XFF);
        snprintf(hex + i*2, 3, "%02x", value);
    }
}
void bytes_to_hex(const BYTE* bytes, DWORD bytes_len, char* hex_output) {
    for (DWORD i = 0; i < bytes_len; i++) {
        snprintf(hex_output + (i * 2), 3, "%02x", bytes[i]);
    }
    hex_output[bytes_len * 2] = '\0';
}
void hex_to_uint32(const char *hex, uint32_t* array) {
    for(int i=0;i<strlen(hex)/8;i++)
        array[i]=0;
    for (int i = 0; i < strlen(hex)/2; i++) {
        uint32_t value;
        if(hex[2*i]<='9')
            value=hex[i*2]-'0';
        else if(hex[2*i]>='a')
            value=hex[i*2]-'a'+10;
        else value=hex[i*2]-'A'+10;
        if(hex[2*i+1]<='9')
            value= value*16 + hex[i*2+1]-'0';
        else if(hex[2*i+1]>='a')
            value=value*16 + hex[i*2+1]-'a'+10;
        else value=value*16 + hex[i*2+1]-'A'+10;
        array[i/4] = (array[i/4]<<8) | value;
    }

}
void bytes_to_arr_uint32(BYTE* bytes, DWORD bytes_len, uint32_t* output){
    for(int i=0;i<bytes_len/4;i++)
        output[i]=0;
    for(int i=0;i<bytes_len;i++)
        output[i/4]= (output[i/4]<<8) | (uint32_t)bytes[i];
}
uint32_t update_FSM() {
    uint32_t F = (R1 + R2) ^ R3;
    R3 = R2;
    R2 = R1;
    R1 = LFSR[5] ^ F;
    return F;
}

void update_LFSR(uint32_t F) {
    uint32_t temp = LFSR[0] ^ F;
    for (int i = 0; i < LFSR_SIZE - 1; i++) {
        LFSR[i] = LFSR[i + 1];
    }
    LFSR[LFSR_SIZE - 1] = temp;
}
void initialize(uint32_t key[8], uint32_t iv[4]) {
    for (int i = 0; i < 8; i++) {
        LFSR[i] = key[i];
    }
    for (int i = 0; i < 4; i++) {
        LFSR[8 + i] = iv[i];
    }
    for (int i = 12; i < LFSR_SIZE; i++) {
        LFSR[i] = key[i - 12] ^ iv[i - 12];
    }
    R1 = R2 = R3 = 0;
    for (int i = 0;i < 32;i++) {
        uint32_t F = update_FSM();
        update_LFSR(F);
    }

}


uint32_t generate_keystream() {
    uint32_t F = update_FSM();
    uint32_t keystream = LFSR[0] ^ F;
    update_LFSR(F);
    return keystream;
}

char* snowVencrypt(char* keyHex, char* plaintext) {
    uint32_t* key=(uint32_t*)malloc(key_len/8);
    uint32_t* iv=(uint32_t*)malloc(4*sizeof(uint32_t));
    BYTE* ivByte=(BYTE*) malloc(16);
    hex_to_uint32(keyHex, key);
    generateIV(ivByte,16);
    bytes_to_arr_uint32(ivByte, 16, iv);
    initialize(key, iv);
    uint32_t* data;
    int length;
    data = string_to_uint32_array(plaintext, &length);
    for (int i = 0; i < length; i++) {
        uint32_t keystream = generate_keystream();
        data[i] ^= keystream;
    }
    char* ivHex=(char*)malloc(33);
    bytes_to_hex(ivByte, 16, ivHex);
    char* ciphertext = (char*) malloc(length*8+33);
    memcpy(ciphertext, ivHex, 32);
    uint32_arr_to_hex(data, length, ciphertext+32);

    return ciphertext;
}
char* snowVdecrypt(char* keyHex, char* ciphertext) {
    uint32_t* key=(uint32_t*)malloc(key_len/8);
    uint32_t* iv=(uint32_t*)malloc(4*sizeof(uint32_t));
    char* ivHex=(char*)malloc(33);
    memcpy(ivHex, ciphertext, 32);
    ivHex[32]=0;
    ciphertext+=32;
    hex_to_uint32(ivHex, iv);
    hex_to_uint32(keyHex, key);
    initialize(key, iv);

    int length=strlen(ciphertext)/4;
    uint32_t* data=(uint32_t*)malloc(length*4+1);
    hex_to_uint32(ciphertext, data);
    for (int i = 0; i < length; i++) {
        uint32_t keystream = generate_keystream();
        data[i] ^= keystream;
    }

    char* result = uint32_array_to_string(data,length);
    return result;
}
static uint8_t snt[30000];
void sangNT() {
    for (long i = 2;i <= 21000 / 2;i++) {
        if (!snt[i]) {
            for (int k = 2;k * i < 21000;k++)
                snt[k * i] = 1;
        }
    }
}
long getPrime(long input) {
    long result1;
    srand(time(NULL) ^ input);
    result1 = rand() % 19000 + 1000;
    long result = result1;
    while (snt[result] && result < 20000)
        result++;
    if (result >= 20000) {
        result = result1;
        while (snt[result])
            result--;
    }
    return result;
}
unsigned long long module(long long e, long long n) {
    long long q, r, x=0, x1, x2, nn = n;
    x2 = 1;
    x1 = 0;
    while (1) {
        q = e / n;
        r = e % n;
        if (r == 0)
            break;
        e = n;
        n = r;
        x = x2 - q * x1;
        x2 = x1;
        x1 = x;
    }
    if (x < 0)
        x = nn + x;
    return x;
}
void ascii_to_binary(unsigned long long n, char bi[20]) {

    int i = 0;
    while (n != 0) {
        bi[i] = n % 2 + '0';
        i++;
        n /= 2;
    }
    bi[i] = 0;
}
unsigned long long nhanBPCL(unsigned long long m, unsigned long long k, unsigned long long n) {
    char bi[100];
    unsigned long long a = m, b = 1;
    ascii_to_binary(k, bi);
    for (int i = 0;i < strlen(bi);i++) {
        if (bi[i] == '1')
            b = (a * b) % n;
        a = (a * a) % n;
    }
    return b;
}

void gopKey(long long a, unsigned long long b, char key[128]) {
    int r, i = 1;
    while (a > 0) {
        r = a % 16;
        a /= 16;
        if (r < 10)
            key[i] = r + '0';
        else
            key[i] = r - 10 + 'A';
        i++;
    }
    if (i - 1 < 10)
        key[0] = i + '0' - 1;
    else
        key[0] = i - 11 + 'A';
    int j = i + 1;
    while (b > 0) {
        r = b % 16;
        b /= 16;
        if (r < 10)
            key[j] = r + '0';
        else
            key[j] = r - 10 + 'A';
        j++;
    }
    if (j - i - 1 < 10)
        key[i] = j - i - 1 + '0';
    else
        key[i] = j - i - 11 + 'A';
    key[j] = 0;
}
void tachKey(unsigned long long* a, unsigned long long* b, char key[128]) {
    *a = 0;*b = 0;
    int len, index;
    if (key[0] <= '9')
        len = key[0] - '0';
    else len = key[0] - 'A' + 10;
    for (index = len;index >= 1;index--) {
        int value;
        if (key[index] <= '9')
            value = key[index] - '0';
        else value = key[index] - 'A' + 10;
        *a = (*a)*16+ value;
    }
    index = len + 1;
    if (key[index] <= '9')
        len = key[index] - '0';
    else len = key[index] - 'A' + 10;
    for (int i = len + index ;i >= index + 1;i--) {
        int value;
        if (key[i] <= '9')
            value = key[i] - '0';
        else value = key[i] - 'A' + 10;
        *b = (*b) * 16 + value;
    }
}
void gopChuoi(char s[500], int* index, unsigned long long c) {
    int i = *index + 1;
    while (c > 0) {
        s[i] = c % 10 + '0';
        c /= 10;
        i++;
    }
    if (i - *index - 1 <= 9)
        s[*index] = i - (*index) - 1 + '0';
    else
        s[*index] = i - (*index) - 1 + 'A' - 10;
    *index = i;
}
void tachChuoi(char s[500], int* index, unsigned long long* c) {
    *c = 0;
    int i, len;
    if (s[*index] <= '9')
        len = *index + s[*index] - '0';
    else
        len = *index + s[*index] - 'A' + 10;
    for (i = len;i >=*index + 1;i--) {
        *c = (*c) * 10 + s[i] - '0';
    }
    *index = len+1;
}
char* generateKeyRSA() {
    char* publicKey = (char*) malloc(256);
    char privateKey[128];
    sangNT();
    unsigned long long p, q, e, n, phiN, d;
    p = getPrime(1245);
    q = getPrime(2356);
    while (p == q)
        p = getPrime(12345);
    n = p * q;
    phiN = (p - 1) * (q - 1);
    e = getPrime(4523);
    while(phiN % e==0)
      e = getPrime(4523);
    d = module(e, phiN);

    gopKey(e, n, publicKey);
    int len = strlen(publicKey);
    publicKey[len]=':';
    gopKey(d, n, publicKey+len+1);
    return publicKey;
}
char* encrypt_RSA(char plaintext[128], char publicKey[128]) {
    unsigned long long n;
    unsigned long long e;
    int index = 0;
    char* cipherText = (char*) malloc(500);
    tachKey(&e, &n, publicKey);
    for (int i = 0;plaintext[i] != 0;i += 2) {
        int m = 0;
        if (plaintext[i] <= '9')
            m = plaintext[i] - '0';
        else m = plaintext[i] - 'A' + 10;
        if (plaintext[i + 1] <= '9')
            m = m * 16 + plaintext[i + 1] - '0';
        else m = m * 16 + plaintext[i + 1] - 'A' + 10;
        unsigned long long c = nhanBPCL(m, e, n);
        gopChuoi(cipherText, &index, c);
    }
    cipherText[index] = 0;
    return cipherText;
}
char* decrypt_RSA(char cipherText[500], char privateKey[128]) {
    unsigned long long n, d;
    int index = 0, len = 0;
    char* plainText = (char*) malloc(128);
    tachKey(&d, &n, privateKey);
    while (cipherText[index] != 0) {
        unsigned long long c;
        tachChuoi(cipherText, &index, &c);
        unsigned long long m = nhanBPCL(c, d, n);
        if (m / 16 <= 9)
            plainText[len] = m / 16 + '0';
        else
            plainText[len] = m / 16 + 'A'-10;
        len++;
        if (m % 16 <= 9)
            plainText[len] = m % 16 + '0';
        else
            plainText[len] = m % 16 + 'A'-10;
        len++;
    }
    plainText[len] = 0;
    return plainText;
}


#define MASK 0x7FFFFFFF
#define KEYSIZE 16
#define IVSIZE 16
const uint8_t S0[256] = {
    0x3e, 0x72, 0x5b, 0x47, 0xca, 0xe0, 0x00, 0x33, 0x04, 0xd1, 0x54, 0x98, 0x09, 0xb9, 0x6d, 0xcb,
    0x7b, 0x1b, 0xf9, 0x32, 0xaf, 0x9d, 0x6a, 0xa5, 0xb8, 0x2d, 0xfc, 0x1d, 0x08, 0x53, 0x03, 0x90,
    0x4d, 0x4e, 0x84, 0x99, 0xe4, 0xce, 0xd9, 0x91, 0xdd, 0xb6, 0x85, 0x48, 0x8b, 0x29, 0x6e, 0xac,
    0xcd, 0xc1, 0xf8, 0x1e, 0x73, 0x43, 0x69, 0xc6, 0xb5, 0xbd, 0xfd, 0x39, 0x63, 0x20, 0xd4, 0x38,
    0x76, 0x7d, 0xb2, 0xa7, 0xcf, 0xed, 0x57, 0xc5, 0xf3, 0x2c, 0xbb, 0x14, 0x21, 0x06, 0x55, 0x9b,
    0xe3, 0xef, 0x5e, 0x31, 0x4f, 0x7f, 0x5a, 0xa4, 0x0d, 0x82, 0x51, 0x49, 0x5f, 0xba, 0x58, 0x1c,
    0x4a, 0x16, 0xd5, 0x17, 0xa8, 0x92, 0x24, 0x1f, 0x8c, 0xff, 0xd8, 0xae, 0x2e, 0x01, 0xd3, 0xad,
    0x3b, 0x4b, 0xda, 0x46, 0xeb, 0xc9, 0xde, 0x9a, 0x8f, 0x87, 0xd7, 0x3a, 0x80, 0x6f, 0x2f, 0xc8,
    0xb1, 0xb4, 0x37, 0xf7, 0x0a, 0x22, 0x13, 0x28, 0x7c, 0xcc, 0x3c, 0x89, 0xc7, 0xc3, 0x96, 0x56,
    0x07, 0xbf, 0x7e, 0xf0, 0x0b, 0x2b, 0x97, 0x52, 0x35, 0x41, 0x79, 0x61, 0xa6, 0x4c, 0x10, 0xfe,
    0xbc, 0x26, 0x95, 0x88, 0x8a, 0xb0, 0xa3, 0xfb, 0xc0, 0x18, 0x94, 0xf2, 0xe1, 0xe5, 0xe9, 0x5d,
    0xd0, 0xdc, 0x11, 0x66, 0x64, 0x5c, 0xec, 0x59, 0x42, 0x75, 0x12, 0xf5, 0x74, 0x9c, 0xaa, 0x23,
    0x0e, 0x86, 0xab, 0xbe, 0x2a, 0x02, 0xe7, 0x67, 0xe6, 0x44, 0xa2, 0x6c, 0xc2, 0x93, 0x9f, 0xf1,
    0xf6, 0xfa, 0x36, 0xd2, 0x50, 0x68, 0x9e, 0x62, 0x71, 0x15, 0x3d, 0xd6, 0x40, 0xc4, 0xe2, 0x0f,
    0x8e, 0x83, 0x77, 0x6b, 0x25, 0x05, 0x3f, 0x0c, 0x30, 0xea, 0x70, 0xb7, 0xa1, 0xe8, 0xa9, 0x65,
    0x8d, 0x27, 0x1a, 0xdb, 0x81, 0xb3, 0xa0, 0xf4, 0x45, 0x7a, 0x19, 0xdf, 0xee, 0x78, 0x34, 0x60
};

const uint8_t S1[256] = {
    0x55, 0xc2, 0x63, 0x71, 0x3b, 0xc8, 0x47, 0x86, 0x9f, 0x3c, 0xda, 0x5b, 0x29, 0xaa, 0xfd, 0x77,
    0x8c, 0xc5, 0x94, 0x0c, 0xa6, 0x1a, 0x13, 0x00, 0xe3, 0xa8, 0x16, 0x72, 0x40, 0xf9, 0xf8, 0x42,
    0x44, 0x26, 0x68, 0x96, 0x81, 0xd9, 0x45, 0x3e, 0x10, 0x76, 0xc6, 0xa7, 0x8b, 0x39, 0x43, 0xe1,
    0x3a, 0xb5, 0x56, 0x2a, 0xc0, 0x6d, 0xb3, 0x05, 0x22, 0x66, 0xbf, 0xdc, 0x0b, 0xfa, 0x62, 0x48,
    0xdd, 0x20, 0x11, 0x06, 0x36, 0xc9, 0xc1, 0xcf, 0xf6, 0x27, 0x52, 0xbb, 0x69, 0xf5, 0xd4, 0x87,
    0x7f, 0x84, 0x4c, 0xd2, 0x9c, 0x57, 0xa4, 0xbc, 0x4f, 0x9a, 0xdf, 0xfe, 0xd6, 0x8d, 0x7a, 0xeb,
    0x2b, 0x53, 0xd8, 0x5c, 0xa1, 0x14, 0x17, 0xfb, 0x23, 0xd5, 0x7d, 0x30, 0x67, 0x73, 0x08, 0x09,
    0xee, 0xb7, 0x70, 0x3f, 0x61, 0xb2, 0x19, 0x8e, 0x4e, 0xe5, 0x4b, 0x93, 0x8f, 0x5d, 0xdb, 0xa9,
    0xad, 0xf1, 0xae, 0x2e, 0xcb, 0x0d, 0xfc, 0xf4, 0x2d, 0x46, 0x6e, 0x1d, 0x97, 0xe8, 0xd1, 0xe9,
    0x4d, 0x37, 0xa5, 0x75, 0x5e, 0x83, 0x9e, 0xab, 0x82, 0x9d, 0xb9, 0x1c, 0xe0, 0xcd, 0x49, 0x89,
    0x01, 0xb6, 0xbd, 0x58, 0x24, 0xa2, 0x5f, 0x38, 0x78, 0x99, 0x15, 0x90, 0x50, 0xb8, 0x95, 0xe4,
    0xd0, 0x91, 0xc7, 0xce, 0xed, 0x0f, 0xb4, 0x6f, 0xa0, 0xcc, 0xf0, 0x02, 0x4a, 0x79, 0xc3, 0xde,
    0xa3, 0xef, 0xea, 0x51, 0xe6, 0x6b, 0x18, 0xec, 0x1b, 0x2c, 0x80, 0xf7, 0x74, 0xe7, 0xff, 0x21,
    0x5a, 0x6a, 0x54, 0x1e, 0x41, 0x31, 0x92, 0x35, 0xc4, 0x33, 0x07, 0x0a, 0xba, 0x7e, 0x0e, 0x34,
    0x88, 0xb1, 0x98, 0x7c, 0xf3, 0x3d, 0x60, 0x6c, 0x7b, 0xca, 0xd3, 0x1f, 0x32, 0x65, 0x04, 0x28,
    0x64, 0xbe, 0x85, 0x9b, 0x2f, 0x59, 0x8a, 0xd7, 0xb0, 0x25, 0xac, 0xaf, 0x12, 0x03, 0xe2, 0xf2
};
const uint32_t EK_d[16] = {
    0x44D7, 0x26BC, 0x626B, 0x135E, 0x5789, 0x35E2, 0x7135, 0x09AF,
    0x4D78, 0x2F13, 0x6BC4, 0x1AF1, 0x5E26, 0x3C4D, 0x789A, 0x47AC
};
static uint32_t LFSR_S[16] = {0};
static uint32_t F_R[2] = {0};
static uint32_t BRC_X[4] = {0};
static int w = 0;

void hex_to_bytes(char* hex, BYTE* output){
  for(int i=0;hex[i]!=0;i++){
    if(hex[i]<='9')
      output[i/2]=hex[i]-'0';
    else if(hex[i]>='a')
      output[i/2]=hex[i]-'a'+10;
    else
      output[i/2]=hex[i]-'A'+10;
    i++;
    if(hex[i]<='9')
      output[i/2]=output[i/2]*16+hex[i]-'0';
    else if(hex[i]>='a')
      output[i/2]=output[i/2]*16+hex[i]-'a'+10;
    else
      output[i/2]=output[i/2]*16+hex[i]-'A'+10;
  }
}
uint32_t AddM(uint32_t a, uint32_t b) {
    uint32_t c = a + b;
    c = (c & MASK) + (c >> 31);
    return c;
}

uint32_t ROT(uint32_t a, int k) {
    return (a << k) | (a >> (32 - k));
}

uint32_t MulByPow2(uint32_t x, int k) {
    return ((x << k) | (x >> (31 - k))) & MASK;
}

void LFSRWithInitialisationMode(uint32_t u) {
    uint32_t f = 0;
    uint32_t v = 0;

    f = LFSR_S[0];
    v = MulByPow2(LFSR_S[0], 8);
    f = AddM(f, v);

    v = MulByPow2(LFSR_S[4], 20);
    f = AddM(f, v);

    v = MulByPow2(LFSR_S[10], 21);
    f = AddM(f, v);

    v = MulByPow2(LFSR_S[13], 17);
    f = AddM(f, v);

    v = MulByPow2(LFSR_S[15], 15);
    f = AddM(f, v);

    f = AddM(f, u);

    for (int i = 0; i < 15; i++) {
        LFSR_S[i] = LFSR_S[i + 1];
    }
    LFSR_S[15] = f;
}
void LFSRWithWorkMode() {
    uint32_t f = 0;
    uint32_t v = 0;

    f = LFSR_S[0];
    v = MulByPow2(LFSR_S[0], 8);
    f = AddM(f, v);

    v = MulByPow2(LFSR_S[4], 20);
    f = AddM(f, v);

    v = MulByPow2(LFSR_S[10], 21);
    f = AddM(f, v);

    v = MulByPow2(LFSR_S[13], 17);
    f = AddM(f, v);

    v = MulByPow2(LFSR_S[15], 15);
    f = AddM(f, v);

    for (int i = 0; i < 15; i++) {
        LFSR_S[i] = LFSR_S[i + 1];
    }
    LFSR_S[15] = f;
}
void BitReorganization() {
    BRC_X[0] = (((LFSR_S[15] & 0x7FFF8000) << 1) | (LFSR_S[14] & 0xFFFF));
    BRC_X[1] = (((LFSR_S[11] & 0xFFFF) << 16) | (LFSR_S[9] >> 15));
    BRC_X[2] = (((LFSR_S[7] & 0xFFFF) << 16) | (LFSR_S[5] >> 15));
    BRC_X[3] = (((LFSR_S[2] & 0xFFFF) << 16) | (LFSR_S[0] >> 15));
}
uint32_t L1(uint32_t x) {
    return x ^ ROT(x, 2) ^ ROT(x, 10) ^ ROT(x, 18) ^ ROT(x, 24);
}

uint32_t L2(uint32_t X) {
    return X ^ ROT(X, 8) ^ ROT(X, 14) ^ ROT(X, 22) ^ ROT(X, 30);
}
uint32_t MAKEU32(uint8_t a, uint8_t b, uint8_t c, uint8_t d) {
    return ((uint32_t)a << 24) | ((uint32_t)b << 16) | ((uint32_t)c << 8) | ((uint32_t)d);
}

uint32_t F_func() {
    uint32_t W, W1, W2;
    uint32_t u, v;
    const uint32_t MASK1 = 0xFF;

    W = (BRC_X[0] ^ F_R[0]) + F_R[1];
    W1 = F_R[0] + BRC_X[1];
    W2 = F_R[1] ^ BRC_X[2];

    u = L1(((W1 << 16) | (W2 >> 16)));
    v = L2(((W2 << 16) | (W1 >> 16)));

    F_R[0] = MAKEU32(S0[(u >> 24) & 0xFF],
                    S1[(u >> 16) & MASK1],
                    S0[(u >> 8) & MASK1],
                    S1[u & MASK1]);

    F_R[1] = MAKEU32(S0[(v >> 24) & 0xFF],
                    S1[(v >> 16) & MASK1],
                    S0[(v >> 8) & MASK1],
                    S1[v & MASK1]);

    return W;
}

uint32_t MAKEU31(uint8_t a, uint16_t b, uint8_t c) {
    return ((uint32_t)a << 23) | ((uint32_t)b << 8) | ((uint32_t)c);
}

void init_LFSR_key_exp(const uint8_t k[16], const uint8_t iv[16]) {
    for (int i = 0; i < 16; i++) {
        LFSR_S[i] = MAKEU31(k[i], EK_d[i], iv[i]) & MASK;
    }
}

void Initialization(const uint8_t k[16], const uint8_t iv[16]) {
    init_LFSR_key_exp(k, iv);

    F_R[0] = 0;
    F_R[1] = 0;

    int nCount = 32;

    while (nCount > 0) {
        BitReorganization();
        w = F_func();
        LFSRWithInitialisationMode(w >> 1);
        nCount--;
    }
}

uint32_t* GenerateKeystream(int KeystreamLen) {
    uint32_t* pKeystream = (uint32_t*)calloc(KeystreamLen, sizeof(uint32_t));
    if (pKeystream == NULL) {
        exit(1);
    }
    BitReorganization();
    F_func();
    LFSRWithWorkMode();

    for (int i = 0; i < KeystreamLen; i++) {
        BitReorganization();
        pKeystream[i] = F_func() ^ BRC_X[3];
        LFSRWithWorkMode();
    }

    return pKeystream;
}

char* encryptZuc128(char* keyHex, char plaintext[500]){
    uint8_t* key=(uint8_t*)malloc(16);
    uint8_t* iv=(uint8_t*)malloc(16);
    hex_to_bytes(keyHex, key);
    generateIV(iv,16);
    Initialization(key, iv);
    uint32_t* data;
    int length;
    data = string_to_uint32_array(plaintext, &length);
    uint32_t* keystream = GenerateKeystream(length);
    for(int i =0;i<length;i++)
      data[i] ^= keystream[i];

    char* ivHex=(char*)malloc(33);
    bytes_to_hex(iv, 16, ivHex);
    char* ciphertext = (char*) malloc(length*8+33);
    memcpy(ciphertext, ivHex, 32);
    uint32_arr_to_hex(data, length, ciphertext+32);
    return ciphertext;

}
char* decryptZuc128(char* keyHex, char* ciphertext) {
    uint8_t* key=(uint8_t*)malloc(16);
    uint8_t* iv =(uint8_t*)malloc(16);
    char* ivHex=(char*)malloc(33);
    memcpy(ivHex, ciphertext, 32);
    ivHex[32]=0;
    ciphertext+=32;

    hex_to_bytes(ivHex, iv);
    hex_to_bytes(keyHex, key);
    Initialization(key, iv);

    int length=strlen(ciphertext)/8;
    uint32_t* data=(uint32_t*)malloc(length*4);
    hex_to_uint32(ciphertext, data);
    uint32_t* keystream = GenerateKeystream(length);
    for (int i = 0; i < length; i++) {
        data[i] ^= keystream[i];
    }

    char* result = uint32_array_to_string(data,length);
    return result;
}
Editor is loading...
Leave a Comment