Untitled
unknown
plain_text
2 years ago
1.1 kB
6
Indexable
% Signal to Quantization Ratio (SQNR) vs. Quantization Levels
% Define the signal
Fs = 1000; % Sampling frequency
t = 0:1/Fs:1; % Time vector
f = 5; % Frequency of the signal
x = sin(2*pi*f*t); % Signal (sinusoid)
% Quantization Parameters
bits = 4:12; % Number of quantization bits
levels = 2.^bits; % Quantization levels
% Initialize arrays to store SQNR values
SQNR = zeros(size(levels));
% Compute SQNR for each quantization level
for i = 1:length(levels)
% Quantize the signal
quantized_signal = round(x * (levels(i) - 1)) / (levels(i) - 1);
% Compute quantization error
quantization_error = x - quantized_signal;
% Compute Signal Power and Quantization Noise Power
signal_power = mean(x.^2);
quantization_noise_power = mean(quantization_error.^2);
% Compute SQNR
SQNR(i) = 10*log10(signal_power / quantization_noise_power);
end
% Plot SQNR vs. Quantization Levels
figure;
plot(bits, SQNR, '-o');
xlabel('Quantization Bits');
ylabel('SQNR (dB)');
title('SQNR vs. Quantization Levels');
grid on;Editor is loading...
Leave a Comment