Untitled
unknown
c_cpp
a year ago
7.2 kB
11
Indexable
Delaunator::Delaunator(std::vector<double> const& in_coords)
: coords(in_coords),
triangles(),
halfedges(),
hull_prev(),
hull_next(),
hull_tri(),
hull_start(),
m_hash(),
m_center_x(),
m_center_y(),
m_hash_size(),
m_edge_stack() {
std::size_t n = coords.size() >> 1;
double max_x = std::numeric_limits<double>::min();
double max_y = std::numeric_limits<double>::min();
double min_x = std::numeric_limits<double>::max();
double min_y = std::numeric_limits<double>::max();
std::vector<std::size_t> ids;
ids.reserve(n);
for (std::size_t i = 0; i < n; i++) {
const double x = coords[2 * i];
const double y = coords[2 * i + 1];
if (x < min_x) min_x = x;
if (y < min_y) min_y = y;
if (x > max_x) max_x = x;
if (y > max_y) max_y = y;
ids.push_back(i);
}
const double cx = (min_x + max_x) / 2;
const double cy = (min_y + max_y) / 2;
double min_dist = std::numeric_limits<double>::max();
std::size_t i0 = INVALID_INDEX;
std::size_t i1 = INVALID_INDEX;
std::size_t i2 = INVALID_INDEX;
// pick a seed point close to the centroid
for (std::size_t i = 0; i < n; i++) {
const double d = dist(cx, cy, coords[2 * i], coords[2 * i + 1]);
if (d < min_dist) {
i0 = i;
min_dist = d;
}
}
const double i0x = coords[2 * i0];
const double i0y = coords[2 * i0 + 1];
min_dist = std::numeric_limits<double>::max();
// find the point closest to the seed
for (std::size_t i = 0; i < n; i++) {
if (i == i0) continue;
const double d = dist(i0x, i0y, coords[2 * i], coords[2 * i + 1]);
if (d < min_dist && d > 0.0) {
i1 = i;
min_dist = d;
}
}
double i1x = coords[2 * i1];
double i1y = coords[2 * i1 + 1];
double min_radius = std::numeric_limits<double>::max();
// find the third point which forms the smallest circumcircle with the first two
for (std::size_t i = 0; i < n; i++) {
if (i == i0 || i == i1) continue;
const double r = circumradius(
i0x, i0y, i1x, i1y, coords[2 * i], coords[2 * i + 1]);
if (r < min_radius) {
i2 = i;
min_radius = r;
}
}
if (!(min_radius < std::numeric_limits<double>::max())) {
throw std::runtime_error("not triangulation");
}
double i2x = coords[2 * i2];
double i2y = coords[2 * i2 + 1];
if (orient(i0x, i0y, i1x, i1y, i2x, i2y)) {
std::swap(i1, i2);
std::swap(i1x, i2x);
std::swap(i1y, i2y);
}
std::tie(m_center_x, m_center_y) = circumcenter(i0x, i0y, i1x, i1y, i2x, i2y);
// sort the points by distance from the seed triangle circumcenter
std::sort(ids.begin(), ids.end(), compare{ coords, m_center_x, m_center_y });
// initialize a hash table for storing edges of the advancing convex hull
m_hash_size = static_cast<std::size_t>(std::llround(std::ceil(std::sqrt(n))));
m_hash.resize(m_hash_size);
std::fill(m_hash.begin(), m_hash.end(), INVALID_INDEX);
// initialize arrays for tracking the edges of the advancing convex hull
hull_prev.resize(n);
hull_next.resize(n);
hull_tri.resize(n);
hull_start = i0;
size_t hull_size = 3;
hull_next[i0] = hull_prev[i2] = i1;
hull_next[i1] = hull_prev[i0] = i2;
hull_next[i2] = hull_prev[i1] = i0;
hull_tri[i0] = 0;
hull_tri[i1] = 1;
hull_tri[i2] = 2;
m_hash[hash_key(i0x, i0y)] = i0;
m_hash[hash_key(i1x, i1y)] = i1;
m_hash[hash_key(i2x, i2y)] = i2;
std::size_t max_triangles = n < 3 ? 1 : 2 * n - 5;
triangles.reserve(max_triangles * 3);
halfedges.reserve(max_triangles * 3);
add_triangle(i0, i1, i2, INVALID_INDEX, INVALID_INDEX, INVALID_INDEX);
double xp = std::numeric_limits<double>::quiet_NaN();
double yp = std::numeric_limits<double>::quiet_NaN();
for (std::size_t k = 0; k < n; k++) {
const std::size_t i = ids[k];
const double x = coords[2 * i];
const double y = coords[2 * i + 1];
// skip near-duplicate points
if (k > 0 && check_pts_equal(x, y, xp, yp)) continue;
xp = x;
yp = y;
// skip seed triangle points
if (
check_pts_equal(x, y, i0x, i0y) ||
check_pts_equal(x, y, i1x, i1y) ||
check_pts_equal(x, y, i2x, i2y)) continue;
// find a visible edge on the convex hull using edge hash
std::size_t start = 0;
size_t key = hash_key(x, y);
for (size_t j = 0; j < m_hash_size; j++) {
start = m_hash[fast_mod(key + j, m_hash_size)];
if (start != INVALID_INDEX && start != hull_next[start]) break;
}
start = hull_prev[start];
size_t e = start;
size_t q;
while (q = hull_next[e], !orient(x, y, coords[2 * e], coords[2 * e + 1], coords[2 * q], coords[2 * q + 1])) { //TODO: does it works in a same way as in JS
e = q;
if (e == start) {
e = INVALID_INDEX;
break;
}
}
if (e == INVALID_INDEX) continue; // likely a near-duplicate point; skip it
// add the first triangle from the point
std::size_t t = add_triangle(
e,
i,
hull_next[e],
INVALID_INDEX,
INVALID_INDEX,
hull_tri[e]);
hull_tri[i] = legalize(t + 2);
hull_tri[e] = t;
hull_size++;
// walk forward through the hull, adding more triangles and flipping recursively
std::size_t next = hull_next[e];
while (
q = hull_next[next],
orient(x, y, coords[2 * next], coords[2 * next + 1], coords[2 * q], coords[2 * q + 1])) {
t = add_triangle(next, i, q, hull_tri[i], INVALID_INDEX, hull_tri[next]);
hull_tri[i] = legalize(t + 2);
hull_next[next] = next; // mark as removed
hull_size--;
next = q;
}
// walk backward from the other side, adding more triangles and flipping
if (e == start) {
while (
q = hull_prev[e],
orient(x, y, coords[2 * q], coords[2 * q + 1], coords[2 * e], coords[2 * e + 1])) {
t = add_triangle(q, i, e, INVALID_INDEX, hull_tri[e], hull_tri[q]);
legalize(t + 2);
hull_tri[q] = t;
hull_next[e] = e; // mark as removed
hull_size--;
e = q;
}
}
// update the hull indices
hull_prev[i] = e;
hull_start = e;
hull_prev[next] = i;
hull_next[e] = i;
hull_next[i] = next;
m_hash[hash_key(x, y)] = i;
m_hash[hash_key(coords[2 * e], coords[2 * e + 1])] = e;
}
}
Editor is loading...
Leave a Comment