Untitled
unknown
plain_text
a year ago
813 B
9
Indexable
from flask import Flask, request, jsonify
from transformers import pipeline
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains import RetrievalQAChain
app = Flask(__name__)
# Load AI models
nlp_model = pipeline("text2text-generation", model="gpt-3.5-turbo")
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
vectorstore = FAISS.from_embeddings(documents, embeddings)
qa_chain = RetrievalQAChain(
vectorstore=vectorstore,
combine_docs=True,
question_generator=nlp_model,
llm=nlp_model,
)
@app.route('/ask', methods=['POST'])
def ask_question():
query = request.json['query']
response = qa_chain.run(query)
return jsonify({'response': response})
if __name__ == '__main__':
app.run()Editor is loading...
Leave a Comment