CNN basic
unknown
python
4 years ago
1.4 kB
46
Indexable
batch_size = 21
epochs = 32
#Complete stock code
model1 = Sequential()
model1.add(Conv2D(32, kernel_size=(3,3),activation='relu',input_shape=(35,18,2),padding='valid'))
model1.add(LeakyReLU(alpha=0.1))
model1.add(MaxPooling2D(2,padding='same'))
model1.add(Dropout(0.25))
model1.add(Conv2D(64, (3,3), activation='relu',padding='same'))
model1.add(LeakyReLU(alpha=0.1))
model1.add(MaxPooling2D(pool_size=2,padding='same'))
model1.add(Dropout(0.25))
model1.add(Conv2D(128, (3,3), activation='relu',padding='same'))
model1.add(LeakyReLU(alpha=0.1))
model1.add(MaxPooling2D(pool_size=2,padding='same'))
model1.add(Dropout(0.4))
model1.add(Flatten())
model1.add(Dense(128, activation='relu'))
model1.add(LeakyReLU(alpha=0.1))
model1.add(Dropout(0.3))
model1.add(Dense(num_classes, activation='softmax'))
model1.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adam(),metrics=['accuracy'])
model1_train_dropout = model1.fit(train_X, train_Y_one_hot, batch_size=batch_size,epochs=epochs,verbose=1,validation_split=0.2)
model1.save("sanjoukin_gt_train.h5py")
#loadedmodel = .load("sanjoukin_gt_train.h5py")
test_eval = model1.evaluate(test_X, test_Y_one_hot, verbose=11)
Editor is loading...