Untitled
unknown
plain_text
8 days ago
1.3 kB
1
Indexable
Never
import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split # Generate a sequence of random numbers (pseudo-random) np.random.seed(42) # Seed for reproducibility random_numbers = np.random.randint(0, 100, 100) # Prepare data for model training (use previous number(s) to predict next number) X = [] y = [] # Use the previous number to predict the next number for i in range(1, len(random_numbers)): X.append([random_numbers[i - 1]]) # Feature: the previous number y.append(random_numbers[i]) # Target: the next number X = np.array(X) y = np.array(y) # Split the data into training and testing sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Create and train the model model = LinearRegression() model.fit(X_train, y_train) # Make predictions predictions = model.predict(X_test) # Display results print("Predicted values:", predictions) print("True values:", y_test) # Visualize the results plt.scatter(X_test, y_test, color='blue', label='True values') plt.scatter(X_test, predictions, color='red', label='Predictions') plt.xlabel('Previous Number') plt.ylabel('Next Number') plt.title('Random Number Prediction') plt.legend() plt.show()
Leave a Comment