WWW
unknown
matlab
2 years ago
3.1 kB
1
Indexable
CALCULUS - LAB ASSIGNMENT 1 1. PARAMETRIC PLOTTING clc clear all close all t = linspace(0, 2*pi,20); x = 3+2*cos(t); y = 4+2*sin(t); plot(x,y,'k-*') xlabel('x(m)') ylabel('y(m)') title('graph of (x-1)^2+(y-3)^2=4') legend('(x-1)^2+(y-3)^2=4') 2. MULTIPLE PLOTS IN A FIGURE WINDOW (USING COMMAND HOLD ON) clc clear all close all x = linspace(0,1) plot(x,x.^2,'r*') hold on plot(x,sin(x),'g.') plot(x,exp(x),'m+') legend('x^2','sin(x)','exp(x)') 3. MULTIPLE GRAPHS IN A FIGURE WINDOW BY USING SUBPLOT clc clear all close all x=0:0.1:2*pi; subplot(2,2,1) plot(x,sin(x)); subplot(2,2,2) plot(x,cos(x),'r-*'); subplot(2,2,3) plot(x,exp(-x),'go') subplot(2,2,4); plot(x,sin(3*x),'ms') 2 3. GRAPH OF A CURVE THROUGH EZPLOT COMMAND clc clear all syms x% Declaring the parameters as a symbolic object f=sin(2*x)+cos(3*x) figure(1) ezplot(f) figure(2) ezplot(f,[0,3]) 4. GRAPH OF A CURVE AND ITS TANGENT LINE IN THE NEIGHBOURHOOD D OF A POINT. syms x %y=input('enter the function f in terms of x:')% Example, Try the function y=x^2-2*x; y=x^2-2*x; %x1 = input('Enter x value at which tangent : '); % Example, Try the point x1 = 2 x1=2; D=[x1-2 x1+2]% Region about x1 (or Neighbourhood of x1) ezplot(y,D) % graph of the curve in D hold on %Equation of the tangent line passing through x1. yd = diff(y,x); % Differentiation in MATLAB slope = subs(yd,x,x1); % Finding the slope at x1 y1 = subs(y,x,x1); % Finding the value of the function at the given point plot(x1,y1,'ko') % plot the point Tgt_line = slope*(x-x1)+y1 % Tangent Line Equation at the given point h = ezplot(Tgt_line,D); % Plotting the Tangent Line set(h,'color','r') 1) Find the equation of tangent to the curve y = 2 x at (1,2). 2) Find the equation of tangent to the curve 3 y = x at (-2,-8). 5. EXTREMA OF A SINGLE VARIABLE FUNCTION. syms x real f= input('Enter the function f(x):'); fx= diff(f,x) c = solve(fx) 3 cmin = min(double(c)); cmax = max(double(c)); ezplot(f,[cmin-2,cmax+2]) hold on fxx= diff(fx,x) for i = 1:1:size(c) T1 = subs(fxx, x ,c(i) ); T3= subs(f, x, c(i)); if (double(T1)==0) sprintf('The point x is %d inflexion point',double (c(i))) else if (double(T1) < 0) sprintf('The maximum point x is %d', double(c(i))) sprintf('The value of the function is %d', double (T3)) else sprintf('The minimum point x is %d', double(c(i))) sprintf('The value of the function is %d', double (T3)) end end plot(double(c(i)), double(T3), 'r*', 'markersize', 15); end pause h=ezplot(fx,[cmin-2,cmax+2]) set(h,'color','r') hold on pause e=ezplot(fxx,[cmin-4,cmax+4]) set(e,'color','g') hold off Practice Problems: 1. An open-top box is to be made by cutting small congruent squares from the comers of a 12-in.-by-12-in. sheet of tin and bending up the sides. How large should the squares cut from the corners be to make the box hold as much as possible? 4 . 5 2. A rectangle is to be inscribed in a semicircle of radius 2. What is the largest area the rectangle can have, and what are its dimensions? Length :2x, Height: Area: 2x. A(x)= 2x.
Editor is loading...