Untitled
# Loaded files onto environment, encoding is UTF-16LE, separated by tab library(dplyr) library(doBy) library(lubridate) library(ggplot2) library(ggforce) library(tidyverse) library(lme4) library(nlme) age <- function(birth, base = Sys.Date()){ i <- interval(birth, base) p <- as.period(i) year(p) } setupFacetPages <- function(df, xAxisDfVariable, yAxisDfVariable) { tempDf <- df %>% ggplot(df, mapping = aes(x = xAxisDfVariable, y = yAxisDfVariable)) + geom_text(aes(label = df$slopeValue), x = 200, y = 5, stat = 'unique') + facet_wrap_paginate(~df$usubjid, ncol = 4, nrow = 4) + #building facet grid here geom_smooth(method = "lm") + geom_line() + geom_point() + scale_y_continuous(limits = c(0, 120), breaks = seq(0, 120, 20)) + labs(x = "Difference In Days", y = "SCNT1") for (i in 1:n_pages(tempDf)) { df_print <- tempDf + facet_wrap_paginate(~df$usubjid, ncol = 4, nrow = 4, page = i) print(df_print) } } # merging demographics and BL_enroll file as they are unequal (151 rows vs 150 rows) tempDfBL <- BL_enrollhd_cognitive %>% inner_join(enrollhd_demog %>% distinct(usubjid), by = 'usubjid') tempDfBL <- cbind(tempDfBL, age = age(enrollhd_demog$dm1__brthdtc, tempDfBL$visdat)) # now add cag data as new column to tempDFbl tempDfBL <- unique(left_join(tempDfBL, select(enrollhd_cag, usubjid, allele2l), by = "usubjid")) #calculating CAP score and adding it to data frame tempDfBL <- tempDfBL %>% mutate(capScore = age * ((allele2l - 30)/6.49)) #adding age variable from demographic to follow up data frame tempDfFU <- FU_enrollhd_cognitive %>% mutate(age = age(enrollhd_demog$dm1__brthdtc[match(usubjid, enrollhd_demog$usubjid)], tempDfFU$visdat)) #now adding cag length to follow up data frame tempDfFU <- unique(left_join(tempDfFU, select(enrollhd_cag, usubjid, allele2l), by = "usubjid")) tempDfFU <- tempDfFU %>% mutate(capScore = tempDfBL$capScore[match(usubjid, tempDfBL$usubjid)]) mergedDf <- rbind(tempDfBL, tempDfFU) # order data by usubjid ordered_fu <- orderBy(~usubjid, data = mergedDf) # find cumulative date difference and save as diffInDays column modifiedDf <- ordered_fu %>% mutate(visdat = as.POSIXct.Date(visdat, format = "%Y-%m-%d")) %>% arrange(visdat) %>% group_by(usubjid) %>% mutate( diffInDays = difftime(visdat, lag(visdat, 1, default = visdat[1]), unit = "days") %>% as.numeric() %>% cumsum() ) %>% filter(!is.na(allele2l) | !is.na(capScore)) %>% filter(scnt1 != 9997) %>% mutate( slopeValue = format(coef(lm(scnt1 ~ diffInDays))[2], digits = 4) # using f tests to check if ANCOVA model is statistically significant -> general linear f test # co-variant cannot have an interaction with y ~ x (can be used as diffInDays does not interact with age) ) # if 9997 has been entered then it means that value was expected but not applicable, remove it before plotting and set to 0 modifiedDf <- orderBy(~usubjid, data = modifiedDf) capPositive <- modifiedDf[modifiedDf$capScore >= 100,] capNegative <- modifiedDf[modifiedDf$capScore < 100,] cap1 <- modifiedDf[modifiedDf$capScore > 102 & modifiedDf$capScore < 107,] cap2 <- modifiedDf[modifiedDf$capScore > 107 & modifiedDf$capScore < 111,] cap3 <- modifiedDf[modifiedDf$capScore > 111 & modifiedDf$capScore < 117,] cap4 <- modifiedDf[modifiedDf$capScore > 117 & modifiedDf$capScore < 125,] cap5 <- modifiedDf[modifiedDf$capScore > 125 & modifiedDf$capScore < 300,] modelCap1 = lme(scnt1 ~ diffInDays, random = (~1+diffInDays|usubjid), data = cap1) modelCap2 = lme(scnt1 ~ diffInDays, random = (~1+diffInDays|usubjid), data = cap2) modelCap3 = lme(scnt1 ~ diffInDays, random = (~1+diffInDays|usubjid), data = cap3, control = lmeControl(opt = 'optim')) modelCap4 = lme(scnt1 ~ diffInDays, random = (~1+diffInDays|usubjid), data = cap4) modelCap5 = lme(scnt1 ~ diffInDays, random = (~1+diffInDays|usubjid), data = cap5) fullModel = lme(scnt1 ~ diffInDays, random = (~1+diffInDays|usubjid), data = capPositive) # having to use this formula to avoid pseudoreplications as observations are linked to each other fullModelNegativeCap = lme(scnt1 ~ diffInDays, random = (~1+diffInDays|usubjid), data = capNegative) anova(fullModel) print(ggplot(data = modifiedDf, aes(x = diffInDays, y = scnt1, group = usubjid)) + geom_point()) + geom_line() + geom_smooth(aes(colour = capScore >= 100), method = "lm", se = F) print(ggplot(data = capPositive, aes(x = diffInDays, y = scnt1, group = usubjid)) + geom_point() + geom_line() + geom_smooth(method = "lm", se = F) ) setupFacetPages(modifiedDf, modifiedDf$diffInDays, modifiedDf$scnt1)
Leave a Comment