Untitled
unknown
plain_text
3 years ago
1.5 kB
6
Indexable
---------------------------------------------------------------------------
NotFittedError Traceback (most recent call last)
Input In [199], in <cell line: 57>()
54 label_encoder = LabelEncoder()
56 # Fit the label encoder to the encoded column and transform it back to the original form
---> 57 decoded_column = label_encoder.inverse_transform(df['unique_top_5_person_who_resolved'])
59 # Display the updated dataframe
60 print(df.head())
File /Analytics/venv/CAPEANALYTICS/lib/python3.8/site-packages/sklearn/preprocessing/_label.py:288, in LabelEncoder.inverse_transform(self, y)
276 def inverse_transform(self, y):
277 """Transform labels back to original encoding.
278
279 Parameters
(...)
286 y : numpy array of shape [n_samples]
287 """
--> 288 check_is_fitted(self)
289 y = column_or_1d(y, warn=True)
290 # inverse transform of empty array is empty array
File /Analytics/venv/CAPEANALYTICS/lib/python3.8/site-packages/sklearn/utils/validation.py:967, in check_is_fitted(estimator, attributes, msg, all_or_any)
963 attrs = [v for v in vars(estimator)
964 if v.endswith("_") and not v.startswith("__")]
966 if not attrs:
--> 967 raise NotFittedError(msg % {'name': type(estimator).__name__})
NotFittedError: This LabelEncoder instance is not fitted yet. Call 'fit' with appropriate arguments before using this estimator.Editor is loading...