Untitled
user_2161864
plain_text
2 years ago
730 B
15
Indexable
H_0: $$[ H_0: \beta_2 = 0 ]$$
H_alternative: $$[ H_a: \beta_2 \neq 0 ]$$
t-score: $$[ t = \frac{\hat{\beta}_2}{\text{SE}(\hat{\beta}_2)} ]$$
$$
(\hat{\beta}_2)
$$
coefficient for (X_2),
$$
(\text{SE}(\hat{\beta}_2))
$$
standard error
Question 2.b
$$
E(Y | X_1, X_2) = \alpha + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2
$$
H_0 $$
H_0: \beta_3 = 0
$$
H_a $$
H_a: \beta_3 \neq 0
$$
t-score $$
t = \frac{\hat{\beta}_3}{\text{SE}(\hat{\beta}_3)}
$$
Question 2.c
$$
[SE(\beta_!) = \sqrt{\text{Var}(\hat{\beta}_!)}$$
stander error $$ (SE\beta_1)) $$ for the effect in $(X_1)$.
$(\text{Var}(\hat{\beta}_1))$ is the coefficient for $(X_1)$
And the $(\text{Var}(\hat{\beta}_1))$ is the coeficient variance for $(X_1)$.Editor is loading...
Leave a Comment