Untitled
user_2161864
plain_text
2 years ago
730 B
4
Indexable
H_0: $$[ H_0: \beta_2 = 0 ]$$ H_alternative: $$[ H_a: \beta_2 \neq 0 ]$$ t-score: $$[ t = \frac{\hat{\beta}_2}{\text{SE}(\hat{\beta}_2)} ]$$ $$ (\hat{\beta}_2) $$ coefficient for (X_2), $$ (\text{SE}(\hat{\beta}_2)) $$ standard error Question 2.b $$ E(Y | X_1, X_2) = \alpha + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 $$ H_0 $$ H_0: \beta_3 = 0 $$ H_a $$ H_a: \beta_3 \neq 0 $$ t-score $$ t = \frac{\hat{\beta}_3}{\text{SE}(\hat{\beta}_3)} $$ Question 2.c $$ [SE(\beta_!) = \sqrt{\text{Var}(\hat{\beta}_!)}$$ stander error $$ (SE\beta_1)) $$ for the effect in $(X_1)$. $(\text{Var}(\hat{\beta}_1))$ is the coefficient for $(X_1)$ And the $(\text{Var}(\hat{\beta}_1))$ is the coeficient variance for $(X_1)$.
Editor is loading...
Leave a Comment