Untitled
unknown
plain_text
3 months ago
1.7 kB
6
Indexable
Practical 1 Aim: Association Rules(Apriori Algorithm) [] pip install apyori Collecting apyori Downloading apyori-1.1.2.tar.gz (8.6 kB) Preparing metadata (setup.py) ... done Building wheels for collected packages: apyori Building wheel for apyori (setup.py)... done Created wheel for apyori: filename=apyori-1.1.2-py3-none-any.whl size=5954 sha256-1d Stored in directory: /root/.cache/pip/wheels/c4/1a/79/20f55c470a50bb3702a8cb7c94d8ad. Successfully built apyori Installing collected packages: apyori Successfully installed apyori-1.1.2 [ ] import numpy as np import matplotlib.pyplot as plt import pandas as pd from apyori import apriori df=pd.read_csv("/content/Market_Basket Optimisation - Market_Basket_Optimisation.csv") ⇒ df.head() shrimp almonds avocado vegetables green mix grapes whole weat yams flour energy cottage tomato low fat cheese drink juice yogurt gr 0 burgers meatballs eggs NaN NaN NaN NaN NaN NaN NaN NaN 1 chutney NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 2 turkey avocado NaN NaN NaN NaN NaN NaN NaN NaN NaN ↑ mineral 3 milk energy whole wheat green NaN NaN NaN NaN NaN NaN water bar rice tea 4 low fat yogurt NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN transactions=[] for i in range(0,7500): transactions.append([str(df.values[i, j]) for j in range(0,20)]) print(transactions) turkey', 'avocado', 'nan', 'nan', 'nan', 'nan', 'nan', 'nan', 'nan', 'nan', 'nan', 'nan', 'nan', 'nan', 'nan', 'nan', rules-apriori (transactions-transactions,min_support=0.003,min_confidence-0.4,min_lift-4,min_length=3,max_length=3) [] results=list(rules) print(results) [RelationRecord(items-frozenset({'cereals', 'spaghetti', 'ground beef'}), support-8.0030666666666666668, ordered_statu)]
Editor is loading...
Leave a Comment