import cv2
import numpy as np
from qutip import Qobj, basis, tensor, qeye, sigmax, sigmay, sigmaz, sesolve
def adjacency_matrix_4_neighborhood(width, height):
dim = width * height
adj_matrix = np.zeros((dim, dim))
for y in range(height):
for x in range(width):
i = y * width + x
if x > 0:
adj_matrix[i, i - 1] = 1
if x < width - 1:
adj_matrix[i, i + 1] = 1
if y > 0:
adj_matrix[i, i - width] = 1
if y < height - 1:
adj_matrix[i, i + width] = 1
return adj_matrix
def dtqw_operator(dim, coin_operator):
U = tensor(coin_operator, qeye(dim)) * (tensor(basis(2, 0), qeye(dim)) * tensor(basis(2, 0).dag(), basis(dim, 0)) +
tensor(basis(2, 1), qeye(dim)) * tensor(basis(2, 1).dag(), basis(dim, 1)))
return U
def dtqw_step(state, U):
return U * state
def dtqw_segmentation(image, iterations, adj_matrix):
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
dim = gray_image.shape[0] * gray_image.shape[1]
coin_operator = 1 / np.sqrt(2) * (sigmax() + sigmay() + sigmaz())
U = dtqw_operator(dim, coin_operator)
initial_state = tensor(basis(2, 0), basis(dim, 0))
for _ in range(iterations):
initial_state = dtqw_step(initial_state, U)
probabilities = np.abs(initial_state.full()) ** 2
segmented_image = np.reshape(probabilities, gray_image.shape)
return segmented_image
def ctqw_operator(dim, adj_matrix):
H = Qobj(adj_matrix)
U = (-1j * H).expm()
return U
def ctqw_step(state, U):
return U * state
def ctqw_limiting_distribution(state, adj_matrix):
ld_state = sesolve(H=Qobj(adj_matrix), rho0=state, tlist=[0], e_ops=[], options=None, progress_bar=None).states[-1]
return ld_state
def ctqw_segmentation(image, iterations, adj_matrix):
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
dim = gray_image.shape[0] * gray_image.shape[1]
U = ctqw_operator(dim, adj_matrix)
initial_state = basis(dim, 0)
for _ in range(iterations):
initial_state = ctqw_step(initial_state, U)
ld_state = ctqw_limiting_distribution(initial_state, adj_matrix)
probabilities = np.abs(ld_state.full()) ** 2
segmented_image = np.reshape(probabilities, gray_image.shape)
# Load the input image
input_image = cv2.imread('input_image.jpg')
# Generate the adjacency matrix for the image
height, width, _ = input_image.shape
adj_matrix = adjacency_matrix_4_neighborhood(width, height)
# Apply segmentation (you can replace dtqw_segmentation with ctqw_segmentation)
iterations = 100
segmented_image = dtqw_segmentation(input_image, iterations, adj_matrix)
# Normalize the segmented image to the range [0, 255]
segmented_image_normalized = cv2.normalize(segmented_image, None, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX,
dtype=cv2.CV_8U)
# Save the segmented image
cv2.imwrite('segmented_image.jpg', segmented_image_normalized)
return segmented_image