Untitled
unknown
c_cpp
3 years ago
20 kB
14
Indexable
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
// for lex
#define MAXLEN 256
// Token types
typedef enum {
UNKNOWN, END, ENDFILE,
INT, ID,
ADDSUB, MULDIV,
ASSIGN, ADDSUB_ASSIGN,
LPAREN, RPAREN,
INCDEC,
AND, OR, XOR
} TokenSet;
TokenSet getToken(void);
TokenSet curToken = UNKNOWN;
char lexeme[MAXLEN];
// Test if a token matches the current token
int match(TokenSet token);
// Get the next token
void advance(void);
// Get the lexeme of the current token
char *getLexeme(void);
// for parser
#define TBLSIZE 64
// Set PRINTERR to 1 to print error message while calling error()
// Make sure you set PRINTERR to 0 before you submit your code
#define PRINTERR 1
// Call this macro to print error message and exit the program
// This will also print where you called it in your program
#define error(errorNum) err(errorNum);
// Error types
typedef enum {
UNDEFINED, MISPAREN, NOTNUMID, NOTFOUND, RUNOUT, NOTLVAL, DIVZERO, SYNTAXERR
} ErrorType;
// Structure of the symbol table
typedef struct {
int val, addr;
char name[MAXLEN];
} Symbol;
// Structure of a tree node
typedef struct _Node {
TokenSet data;
int val;
char lexeme[MAXLEN];
struct _Node *left;
struct _Node *right;
} BTNode;
int sbcount = 0;
Symbol table[TBLSIZE];
// Initialize the symbol table with builtin variables
void initTable(void);
// Get the value of a variable
int getval(char *str);
// Set the value of a variable
int setval(char *str, int val, int address);
int getadd(char *str);
// Make a new node according to token type and lexeme
BTNode *makeNode(TokenSet tok, const char *lexe);
// Free the syntax tree
void freeTree(BTNode *root);
extern BTNode *factor(void);
// extern BTNode *term(void);
// extern BTNode *term_tail(BTNode *left);
// extern BTNode *expr(void);
// extern BTNode *expr_tail(BTNode *left);
void statement(void);
BTNode* assign_expr(void);
BTNode* or_expr(void);
BTNode* or_expr_tail(BTNode *left);
BTNode* xor_expr(void);
BTNode* xor_expr_tail(BTNode *left);
BTNode* and_expr(void);
BTNode* and_expr_tail(BTNode *left);
BTNode* addsub_expr(void);
BTNode* addsub_expr_tail(BTNode *left);
BTNode* muldiv_expr(void);
BTNode* muldiv_expr_tail(BTNode *left);
BTNode* unary_expr(void);
// Print error message and exit the program
void err(ErrorType errorNum);
// for codeGen
// Evaluate the syntax tree
int evaluateTree(BTNode *root, int reg);
// Print the syntax tree in prefix
void printPrefix(BTNode *root);
int add;
/*============================================================================================
lex implementation
============================================================================================*/
TokenSet getToken(void)
{
int i = 0;
char c = '\0';
while ((c = fgetc(stdin)) == ' ' || c == '\t');
//printf("%c\n", c);
if (isdigit(c)) {
lexeme[0] = c;
c = fgetc(stdin);
i = 1;
while (isdigit(c) && i < MAXLEN) {
lexeme[i] = c;
++i;
c = fgetc(stdin);
}
ungetc(c, stdin);
lexeme[i] = '\0';
return INT;
} else if (c == '+' || c == '-') {
int cnt = 0;
lexeme[0] = c, lexeme[1] = '\0';
c = fgetc(stdin);
if(c == lexeme[0]){
lexeme[1] = c, lexeme[2] = '\0';
//ungetc(c, stdin);
return INCDEC;
}
if(c == '='){
lexeme[1] = '=', lexeme[2] = '\0';
//ungetc(c, stdin);
return ADDSUB_ASSIGN;
}
ungetc(c, stdin);
return ADDSUB;
} else if (c == '*' || c == '/') {
lexeme[0] = c;
lexeme[1] = '\0';
return MULDIV;
} else if (c == '\n') {
lexeme[0] = '\0';
return END;
} else if (c == '=') {
strcpy(lexeme, "=");
return ASSIGN;
} else if (c == '(') {
strcpy(lexeme, "(");
return LPAREN;
} else if (c == ')') {
strcpy(lexeme, ")");
return RPAREN;
} else if(c == '&'){
lexeme[0] = '&', lexeme[1] = '\0';
return AND;
} else if(c == '|'){
lexeme[0] = '|', lexeme[1] = '\0';
return OR;
} else if(c == '^'){
lexeme[0] = '^', lexeme[1] = '\0';
return XOR;
} else if (c == '_' || isalpha(c)) {
lexeme[0] = c, lexeme[1] = '\0';
c = fgetc(stdin);
i = 1;
while ( (isalpha(c) || isdigit(c) || c == '_') && i < MAXLEN) {
lexeme[i] = c;
++i;
c = fgetc(stdin);
}
ungetc(c, stdin);
lexeme[i] = '\0';
return ID;
} else if (c == EOF) {
return ENDFILE;
} else {
return UNKNOWN;
}
}
void advance(void) {
curToken = getToken();
}
int match(TokenSet token) {
if (curToken == UNKNOWN)
advance();
return token == curToken;
}
char *getLexeme(void) {
return lexeme;
}
/*============================================================================================
parser implementation
============================================================================================*/
void initTable(void) {
strcpy(table[0].name, "x");
table[0].val = 0;
table[0].addr = 0;
strcpy(table[1].name, "y");
table[1].val = 0;
table[1].addr = 4;
strcpy(table[2].name, "z");
table[2].val = 0;
table[2].addr = 8;
sbcount = 3;
add = 12;
}
int getval(char *str) {
int i = 0;
for (i = 0; i < sbcount; i++)
if (strcmp(str, table[i].name) == 0)
return table[i].val;
error(NOTLVAL);
if (sbcount >= TBLSIZE)
error(RUNOUT);
//error(NOTLVAL);
strcpy(table[sbcount].name, str);
table[sbcount].val = 0;
sbcount++;
return 0;
}
int getadd(char *str){
int i = 0;
for (i = 0; i < sbcount; i++){
if (strcmp(str, table[i].name) == 0)
return table[i].addr;
}
error(NOTLVAL);
if (sbcount >= TBLSIZE)
error(RUNOUT);
//error(NOTLVAL);
return 0;
}
int setval(char *str, int val, int address) {
int i = 0;
for (i = 0; i < sbcount; i++) {
if (strcmp(str, table[i].name) == 0) {
table[i].val = val;
return val;
}
}
if (sbcount >= TBLSIZE)
error(RUNOUT);
strcpy(table[sbcount].name, str);
table[sbcount].val = val;
table[sbcount].addr = address;
sbcount++;
return val;
}
BTNode *makeNode(TokenSet tok, const char *lexe) {
BTNode *node = (BTNode*)malloc(sizeof(BTNode));
strcpy(node->lexeme, lexe);
node->data = tok;
node->val = 0;
node->left = NULL;
node->right = NULL;
return node;
}
void freeTree(BTNode *root) {
if (root != NULL) {
freeTree(root->left);
freeTree(root->right);
free(root);
}
}
// factor := INT | ADDSUB INT |
// ID | ADDSUB ID |
// ID ASSIGN expr |
// LPAREN expr RPAREN |
// ADDSUB LPAREN expr RPAREN
BTNode *factor(void) {
BTNode *retp = NULL, *left = NULL;
if (match(INT)) {
retp = makeNode(INT, getLexeme());
advance();
} else if (match(ID)) {
left = makeNode(ID, getLexeme());
advance();
// if (!match(ASSIGN)) {
retp = left;
// } else {
// retp = makeNode(ASSIGN, getLexeme());
// advance();
// retp->left = left;
// retp->right = expr();
// }
} else if (match(INCDEC)) {
retp = makeNode(INCDEC, getLexeme());
retp->left = makeNode(INT, "0");
advance();
if(match(ID)) retp -> right = makeNode(ID, getLexeme());
else error(SYNTAXERR);
advance();
} else if (match(LPAREN)) {
advance();
retp = assign_expr();
if (match(RPAREN))
advance();
else
error(MISPAREN);
} else {
printf("%d\n", curToken);
error(NOTNUMID);
}
return retp;
}
// or_expr := xor_expr or_expr_tail
BTNode *or_expr(void){
BTNode *node = xor_expr();
return or_expr_tail(node);
}
BTNode *or_expr_tail(BTNode *left){
BTNode *node = NULL;
if (match(OR)) {
node = makeNode(OR, getLexeme());
advance();
node->left = left;
node->right = xor_expr();
return or_expr_tail(node);
} else {
return left;
}
}
//xor_expr := and_expr xor_expr_tail
BTNode *xor_expr(void){
BTNode *node = and_expr();
return xor_expr_tail(node);
}
//xor_expr_tail := XOR and_expr xor_expr_tail
BTNode *xor_expr_tail(BTNode *left){
BTNode *node = NULL;
if (match(XOR)) {
node = makeNode(XOR, getLexeme());
advance();
node->left = left;
node->right = and_expr();
return xor_expr_tail(node);
} else {
return left;
}
}
//and_expr := addsub_expr and_expr_tail
BTNode *and_expr(void){
BTNode *node = addsub_expr();
return and_expr_tail(node);
}
//and_expr_tail := AND addsub_expr and_expr_tail | NiL
BTNode *and_expr_tail(BTNode *left){
BTNode *node = NULL;
if (match(AND)) {
node = makeNode(AND, getLexeme());
advance();
node->left = left;
node->right = addsub_expr();
return and_expr_tail(node);
} else {
return left;
}
}
//addsub_expr := muldiv_expr addsub_expr_tail
BTNode *addsub_expr(void){
BTNode *node = muldiv_expr();
return addsub_expr_tail(node);
}
//adddsub_expr_tail := ADDSUB muldiv_expr addsub_expr_tail | NiL
BTNode *addsub_expr_tail(BTNode *left){
BTNode *node = NULL;
if (match(ADDSUB)) {
node = makeNode(ADDSUB, getLexeme());
advance();
node->left = left;
node->right = muldiv_expr();
return addsub_expr_tail(node);
} else {
return left;
}
}
//muldiv_expr := unary_expr muldiv_expr_tail
BTNode *muldiv_expr(void){
BTNode *node = unary_expr();
return muldiv_expr_tail(node);
}
//muldiv_expr_tail := MULDIV unary_expr muldiv_expr_tail | NiL
BTNode *muldiv_expr_tail(BTNode *left){
BTNode *node = NULL;
if (match(MULDIV)) {
node = makeNode(MULDIV, getLexeme());
advance();
node->left = left;
node->right = unary_expr();
return muldiv_expr_tail(node);
} else {
return left;
}
}
//unary_expr := ADDSUB unary_expr | factor
BTNode *unary_expr(void){
BTNode *mid;
if( !match(ADDSUB) ) return factor();
mid = makeNode(ADDSUB, getLexeme());
advance();
mid -> right = unary_expr();
mid -> left = makeNode(INT, "0");
return mid;
}
//assign_expr := ID ASSIGN assign_expr | ID ADDSUB_ASSIGN assign_expr | or_expr
BTNode *assign_expr(void){
BTNode *mid, *r, *l;
l = or_expr();
if(match(ASSIGN) || match(ADDSUB_ASSIGN)){
if(l -> data != ID){
error(SYNTAXERR);
}
if(match(ASSIGN)) mid = makeNode(ASSIGN, getLexeme());
else mid = makeNode(ADDSUB_ASSIGN, getLexeme());
advance();
r = assign_expr();
mid -> left = l, mid -> right = r;
return mid;
}
return l;
}
// statement := ENDFILE | END | assign_expr END
void statement(void) {
BTNode *retp = NULL;
if (match(ENDFILE)) {
printf("MOV r0 [0]\n");
printf("MOV r1 [4]\n");
printf("MOV r2 [8]\n");
printf("EXIT 0\n");
exit(0);
} else if (match(END)) {
//printf(">> ");
advance();
} else {
retp = assign_expr();
if (match(END)) {
int ans = evaluateTree(retp, 0);
// printf("Prefix traversal: ");
// printPrefix(retp);
// printf("\n");
freeTree(retp);
//printf(">> ");
advance();
} else {
error(SYNTAXERR);
}
}
}
void err(ErrorType errorNum) {
if (PRINTERR) {
printf("EXIT 1\n");
exit(0);
fprintf(stderr, "error: ");
switch (errorNum) {
case MISPAREN:
fprintf(stderr, "mismatched parenthesis\n");
break;
case NOTNUMID:
fprintf(stderr, "number or identifier expected\n");
break;
case NOTFOUND:
fprintf(stderr, "variable not defined\n");
break;
case RUNOUT:
fprintf(stderr, "out of memory\n");
break;
case NOTLVAL:
fprintf(stderr, "lvalue required as an operand\n");
break;
case DIVZERO:
fprintf(stderr, "divide by constant zero\n");
break;
case SYNTAXERR:
fprintf(stderr, "syntax error\n");
break;
default:
fprintf(stderr, "undefined error\n");
break;
}
}
exit(0);
}
/*============================================================================================
codeGen implementation
============================================================================================*/
int evaluateTree(BTNode *root, int reg) {
int retval = 0, lv = 0, rv = 0;
if (root != NULL) {
switch (root->data) {
case ID:
retval = getval(root->lexeme);
//printf("%s %d\n", root -> lexeme, reg);
printf("MOV r%d [%d]\n", reg, getadd(root -> lexeme));
break;
case INT:
retval = atoi(root -> lexeme);
//retval = setval(root -> lexeme, root -> val, -1);
printf("MOV r%d %d\n", reg, retval);
break;
case ADDSUB_ASSIGN :
lv = evaluateTree(root -> left, reg);
rv = evaluateTree(root->right, reg + 1);
if( !strcmp(root -> lexeme, "+=") ){
retval = setval(root->left->lexeme, lv + rv, -1);
printf("ADD r%d r%d\n", reg, reg + 1);
}
else if( !strcmp(root -> lexeme, "-=")){
retval = setval(root -> left -> lexeme, lv - rv, -1);
printf("SUB r%d r%d\n", reg, reg + 1);
}
printf("MOV [%d] r%d\n", getadd(root -> left -> lexeme), reg);
//printf("end%d\n", reg);
break;
case ASSIGN:
rv = evaluateTree(root->right, reg);
int x = strcmp(root -> left -> lexeme, "x");
int y = strcmp(root -> left -> lexeme, "y");
int z = strcmp(root -> left -> lexeme, "z");
if(!x || !y || !z){
//printf("%s\n", root -> left -> lexeme);
retval = setval(root->left->lexeme, rv, -1);
//printf("%s %d\n", root -> left -> lexeme, getadd(root -> left -> lexeme));
}else{
//printf("%s add %d\n", root -> left -> lexeme, add);
retval = setval(root->left->lexeme, rv, add);
add += 4;
}
printf("MOV [%d] r%d\n", getadd(root -> left -> lexeme), reg);
break;
case ADDSUB:
case MULDIV:
lv = evaluateTree(root->left, reg);
rv = evaluateTree(root->right, reg + 1);
if (strcmp(root->lexeme, "+") == 0) {
retval = lv + rv;
printf("ADD");
} else if (strcmp(root->lexeme, "-") == 0) {
retval = lv - rv;
printf("SUB");
} else if (strcmp(root->lexeme, "*") == 0) {
retval = lv * rv;
printf("MUL");
} else if (strcmp(root->lexeme, "/") == 0) {
if (rv == 0)
error(DIVZERO);
retval = lv / rv;
printf("DIV");
}
printf(" r%d r%d\n", reg, reg + 1);
break;
case INCDEC :
rv = evaluateTree(root -> right, reg);
printf("MOV r%d 1\n", reg + 1);
if(!strcmp(root -> lexeme, "--")){
retval = setval(root->right->lexeme, rv - 1, -1);
printf("SUB");
}
else if(!strcmp(root -> lexeme, "++")){
retval = setval(root->right->lexeme, rv + 1, -1);
printf("ADD");
}
printf(" r%d r%d\n", reg, reg + 1);
printf("MOV [%d] r%d\n", getadd(root -> right -> lexeme), reg);
break;
case AND :
lv = evaluateTree(root -> left, reg);
rv = evaluateTree(root -> right, reg + 1);
retval = (lv & rv);
printf("AND r%d r%d\n", reg, reg + 1);
break;
case OR :
lv = evaluateTree(root -> left, reg);
rv = evaluateTree(root -> right, reg + 1);
retval = (lv | rv);
printf("OR r%d r%d\n", reg, reg + 1);
break;
case XOR :
lv = evaluateTree(root -> left, reg);
rv = evaluateTree(root -> right, reg + 1);
retval = (lv ^ rv);
printf("XOR r%d r%d\n", reg, reg + 1);
break;
default:
retval = 0;
}
}
return retval;
}
void printPrefix(BTNode *root) {
if (root != NULL) {
printf("%s ", root->lexeme);
printPrefix(root->left);
printPrefix(root->right);
}
}
/*============================================================================================
main
============================================================================================*/
// This package is a calculator
// It works like a Python interpretor
// Example:
// >> y = 2
// >> z = 2
// >> x = 3 * y + 4 / (2 * z)
// It will print the answer of every line
// You should turn it into an expression compiler
// And print the assembly code according to the input
// This is the grammar used in this package
// You can modify it according to the spec and the slide
// statement := ENDFILE | END | expr END
// expr := term expr_tail
// expr_tail := ADDSUB term expr_tail | NiL
// term := factor term_tail
// term_tail := MULDIV factor term_tail| NiL
// factor := INT | ADDSUB INT |
// ID | ADDSUB ID |
// ID ASSIGN expr |
// LPAREN expr RPAREN |
// ADDSUB LPAREN expr RPAREN
int main() {
initTable();
//printf(">> ");
while (1) {
statement();
}
return 0;
}
Editor is loading...