Untitled
import cv2 # Load Haar cascade files for face and eyes face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml') eye_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_eye.xml') def detect_face_and_eyes(frame): # Convert to grayscale for better performance gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # Detect faces in the frame faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30)) for (x, y, w, h) in faces: # Draw a rectangle around the face cv2.rectangle(frame, (x, y), (x+w, y+h), (255, 0, 0), 2) # Region of interest (ROI) for eyes within the detected face roi_gray = gray[y:y+h, x:x+w] roi_color = frame[y:y+h, x:x+w] # Detect eyes within the face ROI eyes = eye_cascade.detectMultiScale(roi_gray, scaleFactor=1.1, minNeighbors=10, minSize=(15, 15)) if len(eyes) >= 2: eye_status = "Eyes Open" else: eye_status = "Eyes Closed" # Display eye status on the frame cv2.putText(frame, eye_status, (x, y-10), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2) # Draw rectangles around the eyes for (ex, ey, ew, eh) in eyes: cv2.rectangle(roi_color, (ex, ey), (ex+ew, ey+eh), (0, 255, 0), 2) return frame def main(): # Start the webcam or video stream cap = cv2.VideoCapture(0) # Change to video file path if using a video while True: ret, frame = cap.read() if not ret: print("Error: Unable to read from camera or video.") break # Detect faces and eyes frame = detect_face_and_eyes(frame) # Display the output cv2.imshow("Face and Eye Detection", frame) # Press 'q' to exit if cv2.waitKey(1) & 0xFF == ord('q'): break # Release the capture and close windows cap.release() cv2.destroyAllWindows() if __name__ == "__main__": main()
Leave a Comment