Untitled
unknown
plain_text
2 years ago
667 B
10
Indexable
from sklearn.preprocessing import LabelEncoder
label_enc= LabelEncoder()
for col in data.columns:
data[col]=label_enc.fit_transform(data[col])
from sklearn.preprocessing import StandardScaler
sc= StandardScaler()
scaled_data=sc.fit_transform(data.iloc[:,:])
scaled_data
from sklearn.cluster import KMeans
wcss=[]
for i in range(1,4):
kmeans=KMeans(n_clusters=i,init='k-means++',random_state=42)
kmeans.fit(scaled_data)
wcss.append(kmeans.inertia_)
## Checking where elbow id breaking
clusters_new=KMeans(3,random_state=42)
clusters_new.fit(scaled_data)
clusters_new.labels_
data['Clusters']=clusters_new.labels_Editor is loading...