Untitled
unknown
plain_text
14 days ago
2.8 kB
3
Indexable
Never
from scipy.stats import multivariate_normal class BayesianClassifier: def __init__(self, shared_cov=True, cond_ind=True): self.shared_cov=shared_cov self.cond_ind=cond_ind def fit(self, x, y): self.classes_, class_counts = np.unique(y, return_counts=True) self.n_ , self.p_ = x.shape self.k_ = len(self.classes_) self.cond_means_ = np.zeros(shape=(self.k_, self.p_)) self.cond_covs_ = np.zeros(shape=(self.k_, self.p_, self.p_)) self.class_priors_ = class_counts/len(y) for c in range(self.k_): c_rows = y==c self.cond_means_[c, :] = x[c_rows].mean(axis=0) if self.cond_ind: np.fill_diagonal(self.cond_covs_[c, :, :], x[c_rows].var(axis=0)) else: self.cond_covs_[c, :, :] = np.cov(x[c_rows].T, bias=True) if self.shared_cov: shared_cov = np.moveaxis(self.cond_covs_, 0, -1).dot(self.class_priors_) self.cond_covs_[:] = shared_cov return self def predict_proba(self, x): m, _ = x.shape cond_probs = np.zeros(shape=(m, self.k_)) for c in range(self.k_): # find p(x | c_k) # singular covariance matrices could happen (e.g., through inaccurate estimation) cond_probs[:, c] = multivariate_normal.pdf(x, mean=self.cond_means_[c], # YOUR CODE HERE cov=self.cond_covs_[c],# YOUR CODE HERE allow_singular=True) # find marginal probabilities p(x) by summing all the conditionals weighted by the priors marginal_probs = np.dot(cond_probs, self.class_priors_)# YOUR CODE HERE # find probability vector (p(c1 | x), ..., p(ck | x)) via p(ci | x)=p(x | ci) / p(x) # however, p(x) might have been rounded to 0 # thus, compute via case distinction probs = np.divide((cond_probs*self.class_priors_).T, marginal_probs, where=marginal_probs>0, out=np.zeros(shape=(self.k_, m))).T return probs def predict(self, x): return np.argmax(self.predict_proba(x), axis=1) def decision_function(self, x): probs = self.predict_proba(x) if self.k_ == 2: return np.log(probs[:, 1]/probs[:, 0]) else: res = np.zeros(len(x), self.k_) for c in range(self.k_): res[:, c]=np.log(probs[:, c]/(1-probs[:, c])) return res def generate(self, n, c, random_state=None): return multivariate_normal.rvs(self.cond_means_[c], self.cond_covs_[c], size=n, random_state=random_state)
Leave a Comment