Untitled

mail@pastecode.io avatarunknown
python
24 days ago
386 B
1
Indexable
Never
from sklearn.impute import KNNImputer
# Select numerical features
numerical_features = df.select_dtypes(include=['int64', 'float64'])

# Initialize KNNImputer for numerical features
imputer_num = KNNImputer(n_neighbors=5)  # Set the desired value of k

# Impute missing values for numerical features
df[numerical_features.columns] = imputer_num.fit_transform(numerical_features)