Untitled
unknown
plain_text
2 years ago
1.0 kB
3
Indexable
from sklearn.neural_network import MLPClassifier import matplotlib.pyplot as plt from sklearn.metrics import f1_score activation_functions = ['identity', 'logistic', 'tanh', 'relu'] f1_scores = {} loss_curves = {} for activation_function in activation_functions: mlp = MLPClassifier(activation=activation_function, random_state=42) mlp.fit(X_train_new, y_train) y_pred = mlp.predict(X_test_new) f1_macro = f1_score(y_test, y_pred, average='macro') f1_scores[activation_function] = f1_macro loss_curve = mlp.loss_curve_ loss_curves[activation_function] = loss_curve plt.figure(figsize=(12, 6)) for activation_function, loss_curve in loss_curves.items(): plt.plot(loss_curve, label=f'Activation: {activation_function}') plt.title("Loss Curves for Different Activation Functions") plt.xlabel("Number of Iterations") plt.ylabel("Loss Metric") plt.legend() plt.grid(True) plt.show() for activation_function, f1_score in f1_scores.items(): print("Activation:",activation_function," - F1-macro =", f1_score)
Editor is loading...