Untitled
unknown
plain_text
8 months ago
1.5 kB
6
Indexable
import base64
from PIL import Image
import io
# Assuming `response_json['image']` contains the base64 string
image_data = base64.b64decode(response_json['image'])
image = Image.open(io.BytesIO(image_data))
image.show()
# device2_server.py
from flask import Flask, request, jsonify
from PIL import Image
import io
import cv2
import numpy as np
import model_det2
app = Flask(__name__)
@app.route('/process-image', methods=['POST'])
def process_image():
file = request.files['image']
image = Image.open(file.stream).convert('RGB') # Ensure it's RGB
# Convert PIL image to OpenCV format
image_np = np.array(image)
cv2.imshow("raw", cv2.resize(image_np, None, fx=0.25, fy=0.25))
cv2.waitKey(100)
# Do your image processing here, return list of values
#values = ["value1", "value2", "value3"]
im1, obbs, classes, conf = model_det2.recognise_det2(image_np)
cv2.imshow("ann", cv2.resize(im1, None, fx=0.25, fy=0.25))
cv2.waitKey(100)
#return jsonify(classes)
# Convert im1 (OpenCV image) to base64 string
_, buffer = cv2.imencode('.jpg', im1)
im1_bytes = buffer.tobytes()
im1_base64 = base64.b64encode(im1_bytes).decode('utf-8')
return jsonify({
'image': im1_base64,
'obbs': obbs,
'classes': classes,
'conf': conf
})
if __name__ == '__main__':
app.run(host='0.0.0.0', port=5000) # Expose on local network
Editor is loading...
Leave a Comment