Untitled
unknown
plain_text
2 years ago
1.8 kB
12
Indexable
import numpy as np
import pandas as pd
from sklearn.decomposition import PCA
from scipy.stats import norm
import pymc3 as pm
def local_pca(data, n_components=2):
"""
Apply PCA on local areas of the spatial field data.
:param data: DataFrame with spatial field data.
:param n_components: Number of principal components to keep.
:return: DataFrame with PCA components for each local area.
"""
pca_results = pd.DataFrame()
for area in data['Area'].unique():
local_data = data[data['Area'] == area].drop(['Area'], axis=1)
pca = PCA(n_components=n_components)
pca.fit(local_data)
pca_data = pca.transform(local_data)
pca_df = pd.DataFrame(pca_data, columns=[f'PC{i+1}' for i in range(n_components)])
pca_df['Area'] = area
pca_results = pd.concat([pca_results, pca_df], ignore_index=True)
return pca_results
def hierarchical_bayesian_model(pca_data):
"""
Define and run a hierarchical Bayesian model using Local PCA data.
:param pca_data: DataFrame with PCA components for each local area.
"""
n_areas = pca_data['Area'].nunique()
with pm.Model() as model:
# Hyperparameters
mu = pm.Normal('mu', mu=0, sd=10, shape=n_areas)
sigma = pm.HalfNormal('sigma', sd=10, shape=n_areas)
# Model for each area
for area in range(n_areas):
area_data = pca_data[pca_data['Area'] == area]
area_index = area_data.index
Y_obs = pm.Normal('Y_obs' + str(area), mu=mu[area], sd=sigma[area], observed=area_data['PC1'].values)
# Sampling
trace = pm.sample(1000)
return trace
# Example usage
data = pd.read_csv('your_spatial_data.csv') # Load your spatial field data
pca_data = local_pca(data)
trace = hierarchical_bayesian_model(pca_data)
Editor is loading...
Leave a Comment