Untitled
unknown
plain_text
a year ago
1.8 kB
5
Indexable
import numpy as np import pandas as pd from sklearn.decomposition import PCA from scipy.stats import norm import pymc3 as pm def local_pca(data, n_components=2): """ Apply PCA on local areas of the spatial field data. :param data: DataFrame with spatial field data. :param n_components: Number of principal components to keep. :return: DataFrame with PCA components for each local area. """ pca_results = pd.DataFrame() for area in data['Area'].unique(): local_data = data[data['Area'] == area].drop(['Area'], axis=1) pca = PCA(n_components=n_components) pca.fit(local_data) pca_data = pca.transform(local_data) pca_df = pd.DataFrame(pca_data, columns=[f'PC{i+1}' for i in range(n_components)]) pca_df['Area'] = area pca_results = pd.concat([pca_results, pca_df], ignore_index=True) return pca_results def hierarchical_bayesian_model(pca_data): """ Define and run a hierarchical Bayesian model using Local PCA data. :param pca_data: DataFrame with PCA components for each local area. """ n_areas = pca_data['Area'].nunique() with pm.Model() as model: # Hyperparameters mu = pm.Normal('mu', mu=0, sd=10, shape=n_areas) sigma = pm.HalfNormal('sigma', sd=10, shape=n_areas) # Model for each area for area in range(n_areas): area_data = pca_data[pca_data['Area'] == area] area_index = area_data.index Y_obs = pm.Normal('Y_obs' + str(area), mu=mu[area], sd=sigma[area], observed=area_data['PC1'].values) # Sampling trace = pm.sample(1000) return trace # Example usage data = pd.read_csv('your_spatial_data.csv') # Load your spatial field data pca_data = local_pca(data) trace = hierarchical_bayesian_model(pca_data)
Editor is loading...
Leave a Comment