Untitled
unknown
plain_text
2 years ago
710 B
5
Indexable
from sklearn.ensemble import RandomForestRegressor X_rf = X_case1.dropna() X_rf = pd.get_dummies(X_rf) # Parameters in RandomForestRegressor function can be optimize through random search or grid search # but I will skip it for now rf_model = RandomForestRegressor(max_depth=10) rf_model.fit(X_rf.drop('ret', axis=1), X_rf['ret']) features_test = X_case1.columns importances = rf_model.feature_importances_ indices = np.argsort(importances)[-9:] # top 10 features plt.title('Feature Importances') plt.barh(range(len(indices)), importances[indices], color='b', align='center') plt.yticks(range(len(indices)), [features_test[i] for i in indices]) plt.xlabel('Relative Importance') plt.show()